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The sheep industry has traditionally known very little about the productivity and wellbeing of individual sheep in a commercial flock. This makes both their individual management and the selection of the best individuals very difficult. Recent advances in the development of wearable accelerometer sensors together with new analytical techniques including machine learning have provided new opportunities for real-time quantitative assessments of animal behaviours related to their production and welfare. Consultation with producers has demonstrated that there is significant interest in the application of autonomous technology to sheep grazing systems. Producers participating in the project workshop identified key priorities for the design and applications for autonomous systems. Ideas included a tag-based system that could predict behaviours, such as time of parturition and feed intake, and that was able to be personalised with real-time information displayed for mobs or individual animals depending on the application. Alerts launched from the system to a phone were thought to be the most useful although the alert route could be determined based on its severity. Low level alerts could go to web or app whereas important and time critical alerts could go to phone.
Modelling completed by Farm Systems Analysis Service shows that the value proposition of this project for the Australian red meat industry has three components. The implementation of this technology would: (1) allow an improvement in profitability through enabling higher stocking rates to be managed through increasing pasture utilisation and enhancing labour use efficiency; (2) allow an improvement in productivity through more precise monitoring and selection; and (3) allow a reduction in production losses through early detection of disease, theft or predation. From the opportunities evaluated it was estimated that the successful implementation of sensors on farms across Australia would increase the gross value of production by $730m in total or $54,000/farm/year. This demonstrates the enormous potential of autonomous monitoring systems. The benefit-cost analysis completed around monitoring of lambing ewes demonstrated that the cost an autonomous system must be less than $5 per ewe to consistently provide a positive economic return.  

The initial experimental phase of this project demonstrated across-flock average prediction accuracy for jaw mounted Actigraph sensors for the behaviours of grazing, ruminating and idle of 83%. This was achieved by converting the acceleration data to metrics and then training a relatively historic (Multi-Level Perceptron (MLP)) neural network. This technique has recently improved with the publication of some new metrics and has resulted in a model that predicts grazing, ruminating and idle behaviours with the accuracies of 93%, 88%, and 86% respectively. The last two years has seen the invention of transformer neural networks from the world’s three leading machine learning research organisations (Meta, Deepmind and Open AI). In December 2020 the first transformer designed to be used with multivariate time series data was published. As tri-axial acceleration is an example of a multivariate time series dataset this method looks like a promising addition to the metrics and MLP methods.   

Experimentation for Phases 2 and 3 focused on developing and validating predictions for the time of parturition under synchronised and natural lambing scenarios. This used a range of analysis techniques of accelerometer data, observations of lambing behaviours and time of parturition from three experiments. The first method used, published by Smith et al. (2020), predicted the time of parturition with average errors ranging from 11 to 45 hours of the actual time of parturition when the duration of lambing was truncated to 10-days. This method produces variable results and does not seem to work so well when ewes are joined naturally and lamb over 4-5 weeks. Predictions over natural lambing periods will probably not be improved significantly on the back of ongoing technology improvements using this statistical approach. Work is on-going using MLPs and transformer neural network-based behaviour prediction models operating on accelerometer sensor data. This will improve with more time spent using more advanced and modern transformer orientated machine learning models. 

The project moved to an image-based or machine vision approach for the real-time monitoring of natural lambing because it was the only system that met the requirements of the project. Custom-built cameras were used to test the feasibility of quantifying date of parturition in real-time over 42-days. The cameras contained three neural networks trained to recognise ewes, lambs and numbers branded onto the side of each. To date only a simple algorithm has been used to predict date of parturition from a single camera. The absolute average error for this first attempt using a very simple prediction algorithm was about 7 days, demonstrating proof of concept. The machine vision technique shows promise and should result in increasing accuracy as more time is spent developing algorithms that move away from accessing single images at a time to those that predict behaviour by tracking individual animals over a series of images i.e., ML based video analysis. It will also be improved by using larger datasets to train the constituent machine learning models that form part of the algorithm. Overall, the project has generated important information that will inform the future of autonomous sheep monitoring systems.






























[bookmark: _Toc114724969]Executive summary
[bookmark: _Toc384863405][bookmark: _Toc384918540][bookmark: _Toc384918766][bookmark: _Toc392153294][bookmark: _Toc392153582][bookmark: _Toc114724970]Background
The sheep industry has traditionally known very little about the productivity and wellbeing of individual sheep in a commercial flock. In addition to knowing little about individual animal performance, the monitoring of whole of flock health and welfare is a significant proportion of the labour use in a sheep production system. The automation of some of this monitoring is expected to both improve labour use efficiency as well as improve welfare through early detection of problems.  With advances in available sensors and similar advances in analytical approaches using machine learning, the industry is now poised to make the most of these opportunities.  This project undertook a range of research to provide the foundational datasets that will allow the industry to move forward into this exciting space.

[bookmark: _Toc114724971]Objectives
1. Developed and verified normal behaviour algorithms on 50 ewes, on a minimum of five properties utilising different breeds of sheep under different nutritional conditions 
2. Utilised behavioural algorithms developed in objective one to predict key behaviours over lambing for synchronised ewes on collaborating properties 
3. Utilised outcomes from objectives one and two to support remote monitoring of a small number of ewes using real time sensors that will test the ability of the algorithms and processes developed to autonomously monitor lambing ewes and to provide remote alerts to the producer
4. Conducted a detailed market analysis, analysing the further development that would be required to enable the development and deployment of a system across the wider sheep industry. This will include:
a. A detailed cost benefit analysis of the value of autonomous alerts at lambing supported by the experimental data outputs 
b. A review of the unit cost and proportion of the flock that would require sensors to derive the benefits of the technology 
c. A review of:
i. Engagement with a commercial partner to investigate the development and release of a commercial version of the developments achieved
ii. A competitor analysis and value proposition-to a commercial partner-analysis 
5. Engaged a minimum of 25 sheep producers in the project and surveyed their perceptions of the value of autonomous monitoring systems for their enterprises 
6. Attended a minimum of two industry events to communicate the objective and outcomes of the project 
7. Published a minimum of two producer and industry facing articles 
8. Submitted a minimum of one peer-reviewed journal paper for review 

[bookmark: _Toc7515602][bookmark: _Toc114724972]Methodology
· [bookmark: _Toc384863410][bookmark: _Toc384918545][bookmark: _Toc384918771][bookmark: _Toc392153299][bookmark: _Toc392153587][bookmark: _Toc7515604]Farmer participation through a specific project workshop as well as presenting at industry days was used to ensure the project activities aligned with the interests and expectations of Australia Sheep Farmers
· A total of 5 different sites were established where 10 sheep that were fitted with a number of sensors were also videoed, these videos were later coded to identify the activity of sheep across 10 second intervals throughout the day
· A neural network was trained to convert sensor output into known sheep activity utilising the dataset generated as part of the project
· Lambing ewes that were wearing sensors were closely monitored over lambing to determine the exact time of birth
· A range of techniques were used to estimate the time of lambing from accelerometer output
· A commercial partner was identified to work towards a system that could identify lambing ewes and estimate time of birth

[bookmark: _Toc384863408][bookmark: _Toc384918543][bookmark: _Toc384918769][bookmark: _Toc392153297][bookmark: _Toc392153585][bookmark: _Toc7515603][bookmark: _Toc114724973]Results/key findings
This project clearly identified that producers were very interested in the concept of autonomous monitoring of livestock and very willing to invest time and energy into seeing progress in this area of work. The project has developed the world’s largest data set of sheep behaviour linked to accelerometer output. The work conducted here will be fundamental in guiding future endeavours in automating aspects of livestock management. The algorithms that have been developed and refined throughout the process have demonstrated the power that machine learning will hold in the future of the grazing livestock industries. The autonomous monitoring of lambing ewes has provided several challenges.  A range of aspects that the project team considered to be unique to lambing events turned out to be specific to individual sheep and not generic to all sheep. This made it difficult to define an accelerometer pattern that described when a ewe was due to lamb or had recently lambed. This prompted the project team to move toward a vision-based approach to lambing identification.  This approach holds promise and has been a useful development of the project. While commercial application of these technologies to farmers still requires additional development, the project has demonstrated the significant potential that already exists to automate some aspects of livestock research and bring a new level of precision to livestock research.  
[bookmark: _Toc114724974]Benefits to industry
This project has thoroughly explored the sensor landscape as applicable to sheep and has built foundational data sets and techniques that can inform both future research efforts as well as commercial interests exploring this space. This work has been made publicly available so that technology developments in the future can start from a competitive advantage compared with where this project started. This project has developed a data set that is several fold larger than any database previously established. It has investigated the different algorithms that can be deployed to these types of data sets and found those that are most likely to deliver a successful outcome. The project has paved the way for more efficient and more accurate research in the future where sensors can be incorporated into research programs and animal activity can be predicted without the need to monitor them using research staff.
[bookmark: _Toc114724975]Future research and recommendations
This project has set the foundation for a range of work using cameras and sensors in combination to automate several processes on Australian sheep farms. The work has demonstrated that while the technology holds significant promise and will eventually be a gamechanger for the industry, the foundational work is both difficult and risky. Future research efforts should be directed toward developing techniques that utilise camera-based approaches to ‘measure’ on-farm outcomes. The livestock industry sits at the edge of a technology revolution that will fundamentally change the way farms are operated. The transition to this new era will be considerably smoother if the likes of MLA continue to invest in technological change. The project has demonstrated that livestock research can significantly benefit from automation of data collection, and it is recommended that autonomous monitoring approaches become the norm in funded research projects.

Specifically, the project has demonstrated that:

· When utilising a neural network trained on a different data set, some labelling of data is required to ensure that predictions are relevant to a new data set 
· Sensor systems based on cameras need to use video footage and animal tracking rather than still images
· The combination of metric-based behavioural models with time series transformers is the best method of prediction of time of lambing
· It is best to use both unsupervised learning and self-supervised learning to boost the effective size of the datasets
· Near real-time training of datasets on edge devices needs to be incorporated into future work to allow unsupervised learning and supervised learning to be merged in near real-time.
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1. [bookmark: _Toc114724976]Background
The sheep industry has traditionally known very little about the productivity and wellbeing of individual sheep in a commercial flock. This makes both their individual management and the selection of the best individuals very difficult.  Recent advances in technology have provided a new opportunity to bring a completely new level of individual assessment to sheep production systems.  We now have available technology that can provide accelerometer and location/proximity data on individual sheep. These new sensor systems have been demonstrated to be extremely effective in matching lambs to their dams as well as predicting components of sheep behaviour. In addition to the developments in sensor technology there have also been major advances in analytical techniques through machine learning approaches.  
Monitoring of various aspects of sheep production systems can make up a significant proportion of the labour use. The automation of some of this monitoring is expected to both improve labour use efficiency as well as improve welfare through early detection of problems.  In order to realise this opportunity, data sets that link sensor output to actual outcome in the animal need to be established.  In addition to these base datasets, there is also a need to establish the appropriate analytical technique to be used to convert the raw sensor data into an actionable output.  
This project undertook a large range of field and sensor data collection and utilised the latest developments in machine learning for this project to develop and pilot a real-time monitoring system on Australian sheep farms. Further development will unlock enormous potential in the sheep industry and provide a platform for sophisticated business development. Objectives
1.1 [bookmark: _Toc114724977] Experimental objectives
1. Develop and verify normal behaviour algorithms on 50 ewes, on a minimum of five properties utilising different breeds of sheep under different nutritional conditions 
2. Utilised behavioural algorithms developed in objective one to predict key behaviours over lambing for synchronised ewes on collaborating properties 
3. Utilised outcomes from objectives one and two to support remote monitoring of a small number of ewes using real time sensors that will test the ability of the algorithms and processes developed to autonomously monitor lambing ewes and to provide remote alerts to the producer
1.2 [bookmark: _Toc114724978] Market and strategic objectives
1. Conducted a detailed market analysis, analysing the further development that would be required to enable the development and deployment of a system across the wider sheep industry. This will include:
a. A detailed cost benefit analysis of the value of autonomous alerts at lambing supported by the experimental data outputs
b. A review of the unit cost and proportion of the flock that would require sensors to derive the benefits of the technology 
c. A review of:
i. Engagement with a commercial partner to investigate the development and release of a commercial version of the developments achieved
ii. A competitor analysis and value proposition-to a commercial partner-analysis
1.3 [bookmark: _Toc114724979] Communication objectives
2. Engaged a minimum of 25 sheep producers in the project and surveyed their perceptions of the value of autonomous monitoring systems for their enterprises 
a. Attended a minimum of two industry events to communicate the objective and outcomes of the project 
b. Published a minimum of two producer and industry facing articles
c. Submitted a minimum of one peer-reviewed journal paper for review 

2. [bookmark: _Toc114724980]Market analysis
This project is focussed on developing a library of accurate behaviour signatures that can be used by current or future sensor technologies to have a positive outcome on sheep welfare and sheep industry productivity. The project has focussed on both normal behaviours – grazing, walking, standing and ruminating as well as behaviours around lambing. The project has shown significant success around developing predictive algorithms for normal behaviours however indicators of lambing have proven to be more difficult.  
2.1 [bookmark: _Toc114724981] Challenges with on-animal sensors for sheep
The three greatest limitations to a viable on-animal sensor system for sheep are: power-use, real-time data transfer and individual sensor price point. It was anticipated that considering the rapid changes occurring in technology development, that challenges with on-sheep sensors would be overcome through the life of this project. This has proven not to be the case. Power use remains a significant challenge. The need for a sheep system on an ear-tag based system for widespread deployment presents a range of challenge around size and weight. This limits the amount of energy storage that is possible on each device. On device solar has shown to be effective in some scenarios however animals seeking shade reduces the reliability of this power source impacts considerably on the length of time the system can be deployed on an individual sheep and there is a need for whole of life deployment.  
Real-time data transfer is critical to allow alert systems to be developed. This poses some challenges considering the terrain that a system would need to be deployed in. The size and form of a sheep-based system makes data transfer a challenge and there is a requirement to cover considerable distances across a sheep farm. This can either be achieved by having long range devices or relatively low-cost base stations that can be deployed in large numbers to provide a wide network. Advances in the availability of 3G and 4G networks as well as satellite do show some promise here. 
The cost for on-animal devices is also a consideration for some use cases. For these cases, where individual animals each need to be fitted with a sensor, individual sensor cost remains a barrier to entry for the current technology types. For other use cases where it is only necessary to have a small number of sensors on a mob of sheep this is not an issue. In these scenarios the cost is more likely to be associated with the support network for the devices (base stations, connectivity etc) than the devices themselves.
2.2 [bookmark: _Toc74625634][bookmark: _Toc114724982] Potential benefits to the industry autonomous monitoring of sheep
[image: ]Modelling completed by John Young of Farm Systems Analysis Service shows that the value proposition of this project for the Australian red meat industry has three components. The implementation of this technology would: 1) allow an improvement in profitability through enabling higher stocking rates to be managed through increasing pasture utilisation and enhancing labour use efficiency; 2) allow an improvement in productivity through more precise monitoring and selection; and 3) allow a reduction in production losses through early detection of disease, theft or predation.   From the opportunities evaluated it was estimated that the successful implementation of sensors on farms across Australia would increase the gross value of production by $730M in total or $54, 000/farm/year. This demonstrates the enormous potential of autonomous monitoring systems. 
Figure 1. The industry value of autonomous monitoring to manage feed resources, improve labour efficiency, target feed to priority mobs, improve culling decisions based on the efficiency of individual ewes, improve the allocation of dry paddock feed during summer and autumn and thus reduce the costs of supplementary feeding, and improve animal performance through real-time welfare alerts.

Further details on the opportunities evaluated in Figure 1, and the magnitude of the benefits were:
1. Increasing the scale of the sheep enterprise by improving pasture production and utilisation (= $310M/year). 
1. Improving labour efficiency also has a large payoff (=$250M/year). If sensor technologies could reduce by 50% the time spent monitoring livestock health & welfare status, a preliminary economic analysis suggests the average benefit could be an additional $45/ha for up to 50% of the sheep industry (Fig. 2; Farming Systems Analysis Service).
1. Improving the targeting of feed to high priority mobs (such as twin-bearing ewes) by providing feedback on animal intake levels (= $83M/year).
1. Improving culling decision for ewes in the flock using estimates of individual animal efficiency based on production and intake (= $41M/year).
1. Reducing cost of supplementary feeding through better allocation of dry paddock feed during summer and autumn = ($31M/year).
1. Improved animal performance through providing real-time animal welfare alerts (=$14M/year).
[image: ]
Figure 2.  The increase in stocking rate and profit that labour-saving technology will allow.

2.3 [bookmark: _Toc74625635][bookmark: _Toc114724983] The current sensor landscape
A thorough analysis of current technologies in the market has been completed as part of the project.  This has been reviewed based on advances in the last 12 months. This analysis was completed to investigate all of the commercial companies that are currently offering or developing sensor-based approaches to monitoring livestock. In addition to these companies there are a range of companies that are providing either human grade or research devices that are useful for proof of concept but are not able to be deployed in a commercial setting.
The companies that we identified that are developing commercial systems are:
1. Allflex – collar-based system for beef and dairy cattle well advanced but not sheep appropriate
2. My Pocket Mate – Stock Keeper – early stages of development, location tracking, no detail on individual animal data, likely to be focussed on mob data
3. Cowlar – development and form based on use in cows only, not suitable for sheep  
4. Foxteck – Image based solution, no progress, not suitable for accelerometer data, focussed on cattle
5. Smart Paddock – GPS tracking only, cattle solution that has some early trial work being conducted in sheep
6. Ceres tag – location-based monitoring, animal health alerts possible, too large for implementation in sheep
7. eShepherd by Agersens – cattle-based solution with no adaptation available for sheep, virtual fencing, very large units
8. Cainthus – image analysis based, entirely focussed on dairy cows, not appropriate for accelerometer data and no work going on in sheep
9. Herddogg – Suitable capability, price point not suitable for individual deployment, retailing at approximately $60 individual unit
10. AgriScan- UHF RFID – potential to incorporate this capability but not at the right stage
11. Vence – cattle focussed and priced, virtual fencing plus animal monitoring, over specified for what is required for sheep industry, units not suitable for sheep
12. Embedivet- price point and ethical considerations for sheep rule this out
13. Digibale Smart tag by AWI – function and form closest to project requirements, the system has not been commercialised
14. Genesmith – Image analysis based, focussed on lambing time in sheep, not currently working on normal behaviours.

2.4 [bookmark: _Toc114724984] Viable options for the Australian sheep industry
2.4.1 [bookmark: _Toc114724985]Digibale Smart Tag
The Smart Tag being developed by AWI is the only tag that is currently under development specifically for sheep. It is also the only tag that is in a form that can be directly applied to sheep as an ear tag and can capture relevant information immediately. This tag system is likely to be sufficiently accurate to provide some welfare warnings and some location data but we have been unable to determine the level of accuracy that can be achieved by these tags. These tags have currently no algorithm to detect a lambing event either before or after it has occurred. A limitation with these tags is that the intention to take the tag to market is yet unclear. It is also unclear what the price point of these tags would be. We were expecting this tag to become commercially available over the life of this project but that has not occurred. However, of all the options that are currently available this tag and system is still considered the closest and most likely to deployed commercially.

3.4.2 [bookmark: _Toc114724986]Genesmith
Genesmith is an autonomous system that uses machine vision rather than on animal sensors to monitor animals. To meet the objectives of this project we require a system that can be deployed to monitor lambing ewes. This system meets those requirements. The Genesmith system uses solar powered cameras that can run machine learning algorithms on the device. The devices rotate 360 degrees and scan the paddock. When a sheep is in range of the system the devices can detect its presence, determining its identity through automated recognition of facial features or side brand number and then determining its status and the presence or otherwise of a lamb. It is currently developed to determine the date of birth of a lamb but has not yet been trained to identify when a ewe is in the process of lambing. This system has become available during the life of the project and is the most advanced of any of the technologies we have been following. The Genesmith team are focussed on commercially releasing the product to accurately determine date of birth and the match between lamb and dam on a commercial scale. Genesmith is an off shoot of neXtgen Agri.

3.5 [bookmark: _Toc114724987] Research devices versus commercial devices
This comprehensive search of commercial companies developing capability has demonstrated that there is very limited commercial activity for on-sheep devices. There are many reasons for this, the most significant one being that the individual unit cost and weight can be significantly higher on devices deployed on cattle which makes it easier to overcome some of the limitations in current technology. There are currently a range of devices that can be used for research purposes, and these have been utilised in this and associated research work. These devices and the new algorithms developed in this project have significant value for research purposes and can have a major influence on the efficiency and accuracy of research data collection. In addition, for scenarios where only a small number of animals per mob need to be monitored, there is potential for some of the systems being developed to be used and add value.  
The lack of commercial device development of on-sheep devices has resulted in the project re-thinking the way sheep can be autonomously monitored. In addition, the benefit-cost analysis completed around monitoring of lambing ewes demonstrated that the cost per ewe of a system must be less than $5 per ewe.  Over the life of the project the capabilities and commercial activity in machine vision have presented opportunities for the project to explore. The benefit of machine vision systems over tag-based systems is that the cost is in the individual units (which can handle hundreds of animals) rather than on a per head basis. In the last 12 months, Genesmith cameras have become available and provide the potential of monitoring ewes in large numbers without the per animal cost and are therefore well suited to monitoring lambing ewes. The lambing monitoring cameras provided by Genesmith for the natural lambing trial present the most likely commercially deployable option currently. 

3.6 [bookmark: _Toc114724988] The value of early detection of dystocia
The cost of dystocia to the Australian sheep industry is estimated at $780 million (Bruce et al. 2021). On an individual enterprise basis, the cost of ewe and lamb mortality from dystocia ranges between $2 and $24 per lambing ewe depending on the prevailing markets and frequency of dystocia in the flock. Figure 3 demonstrates the total loss in production from dystocia assuming a lamb price of $80 and ewe price of $250 across a range of enterprise scales and levels of dystocia.

[image: ]
Figure 3. Total cost to the farm of lamb and ewe mortality from dystocia assuming a ewe value of $250 and lamb value of $80.

3.7 [bookmark: _Toc114724989] Benefit-cost analysis of monitoring for dystocia
The total value to an enterprise of monitoring ewes for dystocia is highly variable depending on a range of factors. The value of the practice is most sensitive to enterprise scale, prevailing lamb and ewe values and the level of dystocia normally occurring in the flock. A variety of scenarios were tested across these three factors. The net benefit of monitoring ewes for dystocia and assisting any ewes that require help was calculated using a range of assumptions. Labour was assumed to be $30/hour and it was assumed it would take 1 hour to treat each ewe with dystocia (which includes travel time to the paddock). Vehicle costs were assumed to be $0.75/km.  
3.7.1 [bookmark: _Toc114724990]Monitoring via daily mob checks
Enterprises that do currently monitor their flocks for dystocia do so by manually checking each lambing mob on a daily basis. Within this scenario, due to the extended time between checks, the survival rate of ewes with dystocia that required assistance was assumed to be 75% and survival rate of assisted lambs assumed to be 50%. Because each mob is disrupted daily within this method the increase in lamb mortality due to starvation, mismothering and exposure was assumed to be 3% (3% higher than would occur without any disruption).

[image: ]
Figure 4. Net value to the farm of monitoring for dystocia assuming a ewe value of $150 and lamb value of $60.

[image: ]
Figure 5. Net value to the farm of monitoring for dystocia assuming a ewe value of $200 and lamb value of $70.

[image: ]
Figure 6. Net value to the farm of monitoring for dystocia assuming a ewe value of $250 and lamb value of $80.
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Figure 7. Net value to the farm of monitoring for dystocia assuming a ewe value of $300 and lamb value of $90.

3.7.2 [bookmark: _Toc114724991]Value of autonomous monitoring
The value of autonomous monitoring was calculated assuming that labour was available on farm to attend to ewes when alerted. The cost of the labour and vehicle was still included in the analysis but only accounted for the time and cost of attending to each dystocia event not the down time in between. Within this scenario, it was assumed that it would be possible to attend to ewes in a timely manner. The survival rate of ewes with dystocia that required assistance was assumed to be 90% and survival rate of assisted lambs assumed to be 80%. Because each mob is disrupted only when a dystocia event has been detected, within this method the increase in lamb mortality due to Starvation, mismothering and exposure was assumed to be 1.5% (1.5% higher than would occur without any disruption).
[image: ]
Figure 8. Net value to the farm of autonomous monitoring for dystocia assuming a ewe value of $150 and lamb value of $60.
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Figure 9. Net value to the farm of autonomous monitoring for dystocia assuming a ewe value of $200 and lamb value of $70.
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Figure 10. Net value to the farm of autonomous monitoring for dystocia assuming a ewe value of $250 and lamb value of $80.
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Figure 11. Net value to the farm of autonomous monitoring for dystocia assuming a ewe value of $300 and lamb value of $90.

3.7.3 [bookmark: _Toc114724992]Relationship with price of implementation
The benefit-cost analysis is obviously dependent on the cost per ewe to implement a monitoring system (Table 1). To calculate these ratios, the assumption was made that dystocia (to the point that both the ewe and lamb will die without intervention) was set at 3% of ewes. These calculations do include the associated cost of intervening to increase the chance of ewe and lamb survival. These calculations do not consider the lower-level dystocia cases where lambs are eventually born but lamb survival is reduced due to a slow birth. The monitoring system would alert these slow births and allow some intervention which would increase lamb survival and the value of monitoring, but this has not been considered in this analysis.  



Table 1.  The benefit-cost ratio of a dystocia monitoring system across a range of implementation costs and ewe and lamb prices.
	Cost per ewe of implementation
	Lamb and Ewe prices

	
	$60 & $150
	$70 & $200
	$80 & $250
	$90 & $300

	$1.00
	$6.21
	$7.92
	$9.63
	$11.34

	$2.00
	$3.11
	$3.96
	$4.82
	$5.67

	$3.00
	$2.07
	$2.64
	$3.21
	$3.78

	$4.00
	$1.55
	$1.98
	$2.41
	$2.84

	$5.00
	$1.24
	$1.58
	$1.93
	$2.27

	$6.00
	$1.04
	$1.32
	$1.61
	$1.89

	$7.00
	$0.89
	$1.13
	$1.38
	$1.62

	$8.00
	$0.78
	$0.99
	$1.20
	$1.42

	$9.00
	$0.69
	$0.88
	$1.07
	$1.26

	$10.00
	$0.62
	$0.79
	$0.96
	$1.13



This analysis shows there is a significant cost of dystocia to a sheep enterprise however daily monitoring of lambing ewes can result in a negative outcome for profitability, but a positive outcome for animal welfare. An autonomous system that provides an alert when there is a problem and allows a much more targeted use of labour and can provide a positive economic outcome as well as a better welfare outcome with more ewes and lambs saved as a result of more timely intervention. The benefit-cost analysis revealed that the per ewe cost of implementation would need to be less than $5 per ewe to consistently provide a positive economic return.  This doesn’t consider the other benefits of the monitoring system. However, what it does show that a lambing monitoring system must be implemented at less than $5/ewe.  

3. [bookmark: _Toc114724993]Methodology
4.1 [bookmark: _Toc114724994]  Farmer workshop
A farmer workshop was held at the Muresk Institute near Northam in Western Australia in August 2019 to gather further insights on how technology could be utilised on-farm. It was attended by 25 producers and industry professionals. The workshop followed a format to get as much group participation as possible:
1. Setting Expectations: Participants were asked to outline their name, their farm and why they came along.
2. Technology Explanation: The current and potential technology capabilities were then outlined as a presentation to allow participants to see what is possible.
3. Capture of group ideas: Participants were then asked to come up with two ideas they would use this new technology for if they had it on their farm. They were asked to share these ideas with the person next to them and then eventually with the entire group.
4. Project explanation: The project was then explained to the group, including the relative pay-offs that are likely to be achieved from the various potential applications of the technology.
5. Group think: Participants were then divided into two groups to develop up a concept of using the technology for a particular solution.  The focus of these discussions was determined by the ideas that had been put forward earlier in the workshop.
6. Presentation of ideas: The two groups then presented their ideas back to the wider group.
7. Summary and close: There was then a period of general discussion before closing the workshop.
In addition to the workshop, the project was outlined at a series of industry events that were attended by over 300 participants during 2019, including:
· Muresk Institute Farm Smart Showcase near Northam, Western Australia (40 participants)
· Techspo Presentation at Wagin, Western Australia (60 participants)
· Sheeps Back Easy Sheep Day at Moora, Western Australia (150 participants)
· Southwest Prime Lamb Group at Hamilton, Victoria (30 participants)
· The Sheep’s Back Producer Advisor panel at Perth, Western Australia (15 participants)
· PlanFarm Professional Development Day at Perth, Western Australia (30 participants)

4.2 [bookmark: _Toc114724995]  Phase 1: Development and verification of normal behaviour algorithms
4.2.1 [bookmark: _Toc114724996]Trial sites
Trial sites were established in Western Australia between 2018 and 2020 to collect data and video footage across five different scenarios. These scenarios were:
1. Merino ewe hoggets grazing dry pasture at the Muresk Institute near Northam
2. Adult Suffolk ewes grazing short green pasture at the Murdoch University Farm in Perth
3. Merino ewe hoggets grazing stubble at the Muresk Institute near Northam
4. Adult Merino ewes grazing ate winter pasture during lambing at Katanning 
5. Adult Merino wethers grazing a vegetative barley crop at the Muresk Institute near Northam 

4.2.2 [bookmark: _Toc114724997]Experimental process
Sensors fitted
On each of the five sites, 10 sheep were fitted with three different sensors in three different locations on the head:
1. An Actigraph accelerometer (ActiGraph device GT3X-BT) were fitted on a halter and attached near the jaw o. The sensor is the size of a small bike light (46 mm x 33 mm x 15 mm).
2. A second smaller (23 mm x 32 mm x 7.6 mm) accelerometer sensor were mounted on a larger cattle tag and attached to the ear
3. A i-gotU GT-600 USB GPS Travel & Sports Data Logger (46 mm x 41.5 x 14 mm; 37 g) that logged location at 1-minute intervals were attached to the sheep using a neck collar 

The sensors were programmed to collect data over the period of the experiment. They ran 24hrs while video collection and therefore coding could only be completed during daylight hours. Actigraph sensors sampled at 30Hz and Axivity sensors sampled at 25Hz. Examples of the sensors are shown in Figure 12.
	[image: A close-up of a race car

Description automatically generated with low confidence]
	[image: Text

Description automatically generated]
	[image: A picture containing indoor, iPod, white

Description automatically generated]


Figure 12. An ActiGraph device GT3X-BT (left), Axivity accelerometer sensor (middle) and i-gotU GT-600 USB GPS Travel & Sports Data Logger (right) used to collect behavioural data from sheep

Video collection and coding
Each of the 10 sheep in each experiment were numbered, by painting numbers at several sites on each side. Over 3-4 days, observers then used 3-4 separate video cameras to collect footage of the animals, rotating the individual animal that they were tracking. At the same time the observers recorded the activity that the individual sheep was undertaking while the video was being captured. This information was used to balance both the individual animal being recorded as well as the activity being recorded where possible. The duration of studies and number of observations made are outlined in Table 2. After the experiment, all the sensors were removed, and the data was downloaded. The videos had a time stamp added so that sensor output could be matched with animal behaviour. 
A subset of each of the videos were then coded by separating the video into ten second blocks and assigning the block one or more behaviours. The behaviours used were sitting, standing, walking, grazing, and ruminating. Additional observations were also made within the ten second epochs: number of steps taken, time spent walking, time of transition between standing and sitting, and time of transition between sitting and standing. An observation may have a single behaviour e.g., Sitting, or a combination of behaviours e.g., Standing, Ruminating. Sometimes the combination of behaviours were concurrent (Standing, Grazing) and others were sequential (Sitting, Walking). In a prior study (Keebles 2016) each observation was coded as a single category, which resulted in lots of different behaviours as the study attempted to codify most of the combinations described in Table 3. This resulted in some confusion between the participants involved in the coding. Having several binary observation types (Sitting, Standing, Walking, Grazing, Ruminating), from which, one or more could be selected for each 10 second epoch, was a cleaner and more explicit way of describing the behaviours.

Table 2. Study duration and number of observations for Phase 1 trial sites.
	
	Murdoch -green pasture
	Muresk - dry pasture
	Muresk - stubble
	Katanning -green pasture
	Muresk -barley

	Duration
	3 days 6 hours
	3 days 21 hours
	3 days 21 hours
	22 days
	23 days

	Number of observations
	28,730
	31,041
	24,406
	37,065
	20,993






Table 3. Breakdown of observation combinations from Phase 1 trial sites.
	Behaviours
	Murdoch -green pasture
	Muresk - dry pasture
	Muresk - stubble
	Katanning - green pasture
	Muresk -barley

	Standing
	2,031
	6,505
	6,392
	6,659
	1,863

	Sitting
	6,984
	10,626
	2,469
	6,919
	9,997

	Walking
	476
	1,002
	1,715
	501
	104

	Standing, Grazing
	5,615
	7,069
	5,253
	6,427
	1,026

	Standing, Ruminating
	1,175
	2,184
	1,684
	4,513
	231

	Standing, Walking
	593
	397
	1,470
	1,503
	507

	Sitting, Grazing,
	298
	
	5
	2
	19

	Sitting, Ruminating
	6,021
	1,538
	836
	3,905
	3,718

	Sitting, Walking
	47
	4
	11
	10
	16

	Sitting, Standing
	138
	
	19
	48
	60

	Standing, Grazing, Walking
	4,871
	929
	4,218
	5,866
	3,271

	Standing, Walking, Ruminating
	136
	39
	89
	549
	39

	Sitting, Standing, Walking
	51
	
	3
	25
	46



Machine-learning – Actigraph and Axivity sensors
Categories
Observations were split into three final behaviours: Ruminating, Grazing and Idle. Ideally “Walking” would also be included. However, sheep do not tend to spend much of their time walking, so there were not enough observations of Walking to be included as a separate final category at this stage. Additionally, it is not straightforward to define walking, because there are times when sheep are grazing when they take several steps during a ten second epoch. Perhaps two models are required, a classifier for Grazing, Ruminating, Idle and a regressor that predicts the number of steps taken.
As previously mentioned, each ten second epoch could be assigned one or more of the basic behaviours: Sitting, Standing, Walking, Grazing, Ruminating. This method was chosen as a simple and explicit way of describing the behaviour during the ten second epochs. When splitting the observations into just three final behaviours: (Ruminating, Grazing and Idle) some decisions must be made about the observations with more than one basic behaviour. For observations with just a single behaviour there is no issue i.e., observations with just one of (Sitting, Standing, Walking, Grazing, Ruminating) get mapped as follows: Sitting, Standing, Walking end up as Idle, whereas Grazing and Ruminating are mapped into their own final behaviours.
The epochs with compound behaviours still must be mapped into a single final behaviour. In the previous report, observations coded as just Walking were ignored and removed from the dataset. As were compound observations with both Ruminating and Grazing. This makes the dataset cleaner and makes the accuracy results higher as some of the observations that can be confused between final behaviours have been removed. As the final purpose of a machine learning behaviour model is to predict a full set of behaviours, all combinations of behaviours were used in the training of models for this report. 

The logic used to split the observations into final behaviours was:
· Set all observations to Idle
· Set all observations with Ruminating as Ruminating
· Set All observations with Grazing as Grazing

Each subsequent line in the logic can overwrite the results of the previous line. This logic results in the mappings outlined in Table 4.
Table 4. Observation behaviour mappings.
	Behaviour
	Final Behaviour

	Standing
	Idle

	Sitting
	Idle

	Walking
	Idle

	Standing, Grazing
	Grazing

	Standing, Ruminating
	Ruminating

	Standing, Walking
	Idle

	Sitting, Grazing,
	Grazing

	Sitting, Ruminating
	Ruminating

	Sitting, Walking
	Idle

	Sitting, Standing
	Idle

	Standing, Grazing, Walking
	Grazing

	Standing, Walking, Ruminating
	Ruminating

	Sitting, Standing, Walking
	Idle



Metrics
Machine learning (ML) algorithms can use any sort of data to train a model. That data can be raw acceleration traces, or some metrics derived from the acceleration traces. The derived metrics can be created from the separate x, y or z axes of the tri-axial accelerometer or calculated from a combination of the three axes.  Most (as of 2022) recent published studies of applying machine learning to predict sheep behaviour have used metrics derived from the acceleration traces rather than the raw acceleration traces. All the metrics published in (Emily Walton, 2018) (Jamie Barwick, 2018) (Solomon Petrus le Roux, 2017) (L. Riaboff, 2022) were used (Appendix A).

The process of training a machine learning model with metrics
The method of generating the ML model using data from Actigraph sensors involved the following steps:
1. Convert Actigraph gt3x files to acceleration csv files with x, y, z acceleration values and a timestamp per row
2. Convert acceleration csv files into 10 second epoch acceleration csv files with 10 seconds of x, y, z acceleration data and a timestamp on each row
3. Merge the 10 second epoch acceleration csv files with coded observation data with 10 seconds of x, y, z acceleration data, a timestamp, and a coded observation on each row
4. Convert the 10 seconds of acceleration data into a list of calculated metrics, a timestamp, and a coded observation on each row
5. Train a Random Forest Classifier or an Extra Tree Classifier on all the metrics for the sole purpose of getting an ordered list of the effective and relevant metrics
6. Train a neural network using the best metrics and the coded observations

Axivity Ear Mounted Accelerometers
Machine learning models trained from data collected from the ear mounted Axivity sensors were generally at least 4% less accurate than the jaw mounted Actigraph sensors. The probable cause of the loss of accuracy is due to the sheep’s ears being more susceptible to movements not being caused by their behaviour, for example wind conditions. One extreme case were the results collected from, Murdock Green Pasture. The resulting ML model had very poor accuracy whereas the corresponding jaw mounted Actigraph trained model had similar accuracy as models trained on other flocks. The period of the Murdock Green Pasture was matched to a period of very windy conditions. The conclusion being that the Axivity sensors were buffeted by high winds during the Murdock Green Pasture study to the extent that it made detecting the behaviour from those sensors difficult. Due to this effective loss of the Murdock Green Pasture Axivity dataset we focused on the jaw mounted data. 
Despite the ear mounted sensors being subject to more spurious noise as compared to the jaw mounted sensor, they are still a promising avenue of research for commercial sensors.

4.2.3 [bookmark: _Toc114724998]In-flock machine-learning and predictions from Actigraph sensors
To train a ML model there should be a the very least a training dataset and a validation dataset. The training set is used to train the ML model and the validation set is used to measure the performance by producing several performance metrics: accuracy, precision recall, F1 and confusion matrices.
(L. Riaboff, 2022) states that the following methods were used to split the acceleration datasets into a training set and a validation set. 
1. Random splits (used in 63% of studies) where the partitioning into training and validation sets is done randomly.
2. Time-based splits (used in 5% of studies) where certain observation periods are used for the training set and other time periods are used for the validation sets.
3. Animal-based splits (used in 32% of studies) where some of the flock (~80%) is used for the training set and the remaining animals are used for the validation set (~20%)
None of these methods are practically good, and the first two are useless. We have done some animal-based splits which has been described as in-flock testing so that we can compare our accuracy and other performance metrics with other studies that have used method 3. The first two methods train and test on data from the same animals so the potential to generalise to unseen sheep is not measured. Method 3. will generalise across sheep, but not across different environments because all the data was collected from one flock. For any of these methods to be optimal the splits should have been three-way instead of two-way, so that a training, validation, and test set were collected. The three sets are used as follows:

1. Training set: used to train the ML model
2. Validation set: used to check that the trained ML model generalises outside of its training set
3. Test set: used to check that the trained and validated model generalises outside of its hyper-parameters (used to optimise results during validation) 
None of the published studies validate and test this way, so we implemented a method of animal-based splits that is a version of k-fold cross validation and named it in-flock testing.  This is effectively the method described in “Animal-based splits” and allows the us to compare our results with some of the published studies.
The Muresk Barley flock of 9 sheep were used with k-fold cross-validation where each fold involves the data from a single sheep being used as the validation set. Then each of the nine sheep are cycled through as the validation set and the results are aggregated where the weight of the results from each sheep are proportional to the number of samples for each sheep. A three-class behaviour MLP classifier (Grazing, Ruminating, Idle) was trained.

4.2.4 [bookmark: _Toc114724999]Cross-flock machine-learning and predictions from Actigraph sensors
In-flock/animal-based validation is not a valid way to access the performance of an ML model designed to be used on flocks that were not involved with the training of the model. The scenario of a ML model being trained on several different flocks representing a spread of environments and types of sheep, and then being used to do some predictions on an unseen flock, is a far more useful scenario than those described in other publications. Consequently, our main protocol for accessing the performance of ML behaviour models is to train the model on several flocks and then train on the flock that was left out of the training i.e., cross-flock validation.
The five flocks that make up the dataset:
1. Murdoch green pasture
2. Muresk dry pasture
3. Muresk stubble
4. Katanning green pasture
5. Muresk barley
To date the most effective model trained to classify behaviour from ten second epochs of acceleration data have been small Multi-Level Perceptrons (MLP) whose features have been selected from the collection of calculated metrics listed in Appendix A. by an Extra Tree Classifier. It should be noted that the previous use of a Random Forest Classifier or Extra Tree Classifier to pre-select the metrics prior to training the MLP resulted in a local peak accuracy in the low range of 6 – 15 metrics. On extending the metric selection to a larger number it was found that the peak in the low range was in fact a local maxima and that the global peak was at a larger number of metrics (18 – 28).
The MLP neural network used was implemented in Keras and Tensorflow. It consisted of just two dense layers and a single dropout layer to restrict overfitting.


Table 5. MLP neural network structure
	Layer Type
	Layer Description
	Activation

	Dense
	16 neurons
	relu

	Dense
	32 neurons
	relu

	Dropout
	0.2
	

	Dense
	3 neurons for 3 classes (Grazing, Ruminating, Idle)
	softmax



Hyperparameters:
· Adam optimizer
· Sparse Categorical Cross-entropy loss function
· Batch size: 64

[bookmark: _Toc114725000]4.3.3 Data from GPS Sensors
To determine the error inherent in the data collected from the GPS loggers on the sheep, a GPS receiver was left in a stationary location at Kensington, Western Australia, for three days to get an idea of the noise in the GPS receiver data. Figure 13. displays the variation in latitude over the three days, where a significant proportion of the samples have errors greater than 10 meters. Variations in the longitude are of the same order.
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Figure 13. Variation in measured latitude of a stationary receiver for i-gotU GT-600 USB GPS Travel & Sports Data Logger GPS located in Kensington, Western Australia.

4.3 [bookmark: _Toc114725001]  Phase 2: Prediction of time of parturition when lambing is synchronised 
4.3.1 [bookmark: _Toc114725002]Data
Two datasets have been used to develop and validate predictions of time of parturition. Firstly, data from the ‘Lambing Density’ project collected in 2016 at the University of Western Australia Research Farm near Pingelly in Western Australia and reported by Lockwood et al. (2018). In this experiment, 360 twin bearing Merino ewes from two replicates of high mob size (n = 130 ewes) and low mob size (n = 50 ewes) were fitted with two jaw-mounted Actigraph tri-axial accelerometers. One on the left side configured as a beacon and one on the right side configured as a receiver, as described by Sohi et al. (2017). All ewes were continuously monitored between 730 and 1600 hours for 11 days commencing 147-148 days after the first of 4 days of artificial insemination. A range of ewe and lamb behaviours and the time of lambing was recorded for 91 ewes as described by Lockwood et al. (2018), and the lambing event itself was captured on video for 56 of these ewes. Video recording were used to code various ewe behaviours over five second periods from a few minutes before until a few minutes after the birth of the first lamb. 
A second data set was collected in June 2020 from lambing ewes at the Muresk Institute Smart Farm, near Northam in Western Australia. About 350 single and twin bearing ewes were artificially inseminated on the 16th and 17th of January 2020 as part of a AMSEA Sire Evaluation Trial. The ewes were fitted with a single Actigraph mounted on a halter 140 days from artificial insemination and allocated to four lambing paddocks. Forty-eight ewes were also be fitted with a GPS unit mounted to a collar. All ewes were side-branded with a unique number for clear identification of the individual ewe from a distance. The ewes were monitored continuously during daylight hours over 10 days and where possible lambing events were recorded by video. Date of lambing was recorded for all ewes. The video recording has been coded as described for the lambing density dataset. The data analysed across the two data sets is summarised in Table 6.
Table 6. Total number of instances and number of sheep observed exhibiting behaviours. 
	Behaviour Description
	Lambing Density 2016
	Muresk Lambing 2020

	
	Instances
	Sheep exhibiting behaviour
	Instances
	Sheep exhibiting behaviour

	Walking but not grazing
	2390
	56
	3218
	54

	Grazing with head down
	2297
	53
	1634
	48

	Lying idle
	1246
	36
	2236
	41

	Standing no push
	3497
	56
	8819
	54

	Agitated Behaviour
	341
	31
	316
	20

	Pawing Ground
	149
	17
	336
	28

	Pushing standing
	339
	29
	1236
	31

	Pushing lying
	1269
	35
	2384
	42

	Bending neck back - skyward
	474
	26
	963
	35

	Bending neck back - lateral
	245
	24
	415
	19




4.3.2 [bookmark: _Toc114725003]Predictions using statistical methods
(Daniel Smith, 2020) predicts the time of parturition using various statistical methods applied to activity values derived from the acceleration data. This method does not involve machine learning and therefore does not require any behaviour observations but does require the date and time of birth to be known to verify the accuracy of the methods. The method that resulted in the smallest mean error for the Lambing Density 2016 dataset was the Earth Mover Distance (EMD) matrix method.
The EMD matrix method involves several steps:
1. Approximately remove the effects of gravity from the accelerometer data by subtracting 30 second averages from each axis
2. Convert the tri-axial accelerometer data in activity values using the formula: 
3. Each of the ten days of the study were divided into six four hours blocks: 0-4am, 4am-8am, 8am-12pm, 12pm-4pm, 4pm-8pm, 8pm-12am, resulting in 60 four-hour blocks for the whole study
4. Accumulate all the activity values (30 per second) into four-hour blocks and form a histogram of the activity values for each block
5. Sheep have a diurnal activity pattern so comparing the activity histogram for one time of day against another time of day will not work because normal diurnal variations will obscure any changes caused by a lambing event. So, four-hour blocks of time can only be compared to other four-hours blocks from different days from the same time of day.
6. The EMD algorithm allows a distance (i.e., difference) to be calculated between the activity histograms (probability distributions) of the four-hour blocks that are all from the same time of day. This results in a 10 by 6 (10 days by 6 blocks per day) matrix of EMD distances. 
7. Select the maximum distance from the EMD distance matrix to indicate the four-hour block in which the parturition is most likely to have occurred.
8. Select the middle of the select four-hour block as the date and time of parturition of the first lamb.
The EMD matrix method was applied to three datasets. In each case the datasets had their time truncated to 10 days so that prediction errors could be compared directly. This involved removing some sheep whose birth dates could not be squeezed into the 10 period.
Table 7. Comparison of lambing prediction errors using Smith et al Earth Mover calculations.
	Study
	Duration (days)
	Mean Absolute Error (hours)

	Lambing Density 2016
	10
	10.7

	Muresk Lambing 2020
	10
	45

	Katanning Green Pasture 2019
	10
	18



The best result obtained by (Daniel Smith, 2020) was a mean absolute error of 5.3 hours for a study period of seven days. The shorter the study period the easier the prediction problem becomes and the lower the expected error. If Smith’s study was 10 days, then the reported error may have been in the region of ~7 hours. This seems comparable with the result we obtained for Lambing Density 2016 i.e., 10.7 hours. However, the errors for Muresk Lambing 2020 and Katanning Green Pasture 2019 were considerable larger, to the extent that the result for Muresk Lambing 2020 although better than random, is not useful. One explanation is that Smith et. al. were lucky with their dataset as we were with Lambing Density 2016. Another limitation of this method is that it assumes that a lamb is going to be born in the period of the study, be that 7 or 10 days. It doesn’t take account of the situation where the ewe does not give birth in the period of the study. Some sort of threshold technique would need to be added to the method to indicate as to whether a birth had occurred or not. As the results were quite varied across the three datasets, we did not add the threshold set and decided not to progress with this method.
4.3.3 [bookmark: _Toc114725004]Predictions using metrics-based machine learning techniques
Machine learning can be used to train a classifier to be able to predict when a certain behaviour is happening during a study. It is theoretically possible for a neural network (NN) to be trained to recognise the actual birth event. However, the chances of being able to train a NN to recognise the birth event with just 110 (56 plus 54 from two datasets) examples is extremely low. Another option is to find a behaviour that all sheep exhibit around the time of birth and then look for the greatest concentration of that behaviour to pinpoint a date and time of parturition. The behaviour that looks to be most promising is ‘Licking after birth’ because most sheep exhibited this behaviour after parturition and because there are numerous observations of this behaviour. 
Using a metrics-based ML model to predict time of parturition involved the following steps:
1. Convert Actigraph gt3x files to acceleration csv files with x, y, z acceleration values and a timestamp per row
2. Convert acceleration csv files into 5 second epoch acceleration csv files with 5 seconds of x, y, z acceleration data and a timestamp on each row
3. Merge the 5 second epoch acceleration csv files with coded observation data (licking, not-licking) resulting in 5 seconds of x, y, z acceleration data, a timestamp, and a coded observation on each row
4. Convert the 5 seconds of acceleration data into a list of calculated metrics, a timestamp, and a coded observation on each row
5. Train an Extra Tree Classifier on all the metrics for the sole purpose of getting an ordered list of the effective and relevant metrics (Appendix b.)
6. Train a neural network using the best metrics and the coded observations
7. Run the neural network over the full datasets of sheep not used training so that every five second epoch across the study has a prediction of whether the sheep was licking or not
8. Count the number of times that licking is predicted within each hour of the study
9. Plot the hourly counts of licking behaviour for each sheep for the whole study duration and look for a peak in licking behaviour and compare with the known lambing time
There were noticeable peaks in licking behaviour coinciding with the actual parturition time in about one third of the sheep in the Lambing Density 2016 study. Examples are shown in Figure 14.
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Figure 14. Examples of a peak in predicted licking behaviour coinciding with the parturition event
For the remaining two thirds of sheep in the Lambing Density 2016 study, there was no discernible peak in licking behaviour as shown in Figure 15.	
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Figure 15. Examples of an absence in a peak of predicted licking behaviour coinciding with the parturition event

4.3.4 [bookmark: _Toc114725005]Raw acceleration-based machine learning techniques for the prediction of time of parturition using Convolutional Neural Networks
Convolutional Neural Networks (CNN) were designed specifically to classify, segment and object detect in image data. They can be adapted to classify multivariate time series data. The following variations of CNN were used to classify raw acceleration data. That involved creating matrices with dimensions of 3 x 150 out of five seconds of triaxial data. The CNNs were then trained to classify the acceleration data using the observations from the Lambing Density dataset. (Fawaz, Forestier, Idoumghar, & Muller, 2019) detailed several CNNs that had been adapted for time series classification and their publication came with a companion GIT repo. Their code was used to test the various CNN configurations on the Lambing Density 2016 dataset.
The types of CNN used:
· Fully Convolutional Neural Network (FCN)
· Residual Network (ResNet)
· Encoder: hybrid deep CNN inspired by FCN
· Convolutional Neural Network (CNN)
· Multi-Channel Deep Convolutional Neural Network (MCDCNN)
4.3.5 [bookmark: _Toc114725006]Raw acceleration-based machine learning techniques for the prediction of time of parturition using Long Short Term Memory (LSTM)
A LSTM was coded in and was trained on the Muresk Lambing 2020 dataset for 10,000 epochs. The maximum test accuracy attained prior to overfitting was ≈70% which occurred around epoch 310 (Figure 16).
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Figure 16. The accuracy of the training and test sets for the LSTM on the first 310 epochs on the Muresk Lambing 2020 dataset for Phase 2 of the project
4.3.6 [bookmark: _Toc114725007]Raw acceleration-based machine learning techniques for the prediction of time of parturition using Transformers
During the last couple of years, a lot of progress has been made with a new form of machine learning model called transformers. Primarily transformers have been created for very large language models allowing for almost human level creation of text and the creation of images. These models have been created by the leading organisations in the machine learning space (Meta, Deepmind, Google, and Open AI). Late in 2020 a version of a transformer was published that could be used for multi-variate time series data (George Zerveas, 2020). Tri-axial accelerometer data is a multivariate time series. The publication was paired with code repository that allowed the transformer to be used almost out of the box. All that was required was the acceleration data from the Actigraph and any observation data was merged into a format called sktime (Franz Király, 2019).
In the five flocks’ behavioural data it was clear that the Katanning flock was different. When used as a test set, the accuracy was ~20% lower than the other flocks. One reason for the difference could be because the Katanning flock were lambing. Perhaps pregnant sheep move differently. These led to the idea of creating a huge, labelled dataset.
Between the Lambing Density 2016 and Muresk Lambing 2020 datasets, there are over 600 sheep that have a known date for the birth of their first lamb. If a classifier wants to learn pregnant versus lambed behaviours, then every sample prior to birth is classified as pregnant and every sample after birth is classified as lamb. If the area of interest is ten days each side of the first lamb, then the dataset has around hundred million samples of five second acceleration epochs and their associated behaviour classification (pregnant or lambed).
The process to train a transformer on both the Lambing Density and Muresk Lambing dataset:
1. Convert the Actigraph gt3x files into acceleration files with a sample per row
2. Convert acceleration files into 5 second epoch files
3. Merge the five second epoch files with a pregnant or lambed classification using date of birth spreadsheets for Lambing Density and Muresk Lambing
4. Convert the five second epoch files into sktime format
5. Train and validate the performance of a multivariate time series transformer using the code base supplied by (George Zerveas, 2020)
As the entire dataset, of ~100 million samples, is too large to be used with our computer facilities, one percent of the dataset was selected resulting in a 1 million sample training set. A PC with 128MB RAM and a RTX 3060 GPU can load the dataset into memory and training a transformer within a few hours.
4.3.7 [bookmark: _Toc114725008]Raw acceleration-based machine learning techniques for the prediction of onset of labour and parturition using combined grazing and lambing data sets 
Real-time monitoring of pregnant ewes at the time of labour, would allow intervention with prolonged labour. To undertake this task requires the ability to detect the labour and licking behaviours to identify the start of labour, and the time of parturition. The observations for the Lambing Density 2016 and Muresk Lambing 2020 datasets focused on the parturition period. Therefore, a combined dataset utilising the grazing behaviours and the lambing behaviours was created.
As noted, there is an issue of generalising results across sheep and flocks. To address this issue with the combined dataset, fine-tuning was performed on individual sheep to create a specialised model for individual ewes. Six ewes from the Lambing Density 2016 dataset were chosen as their first birth fell within the observation period.
A CNN-LSTM was trained on the combined dataset, addressing imbalance in the data using Synthetic Minority Oversampling Technique as defined in (Kirk E. Turner, 2022). Labels (ruminating, labour, licking, grazing, walking, idle) were allocated to the samples by priority order, promoting the dataset specific behaviours (ruminating for the grazing behaviours, labour and licking for the lambing behaviours dataset), then selecting the smaller number of samples, where they overlapped within the same sample.

Table 8.  Mapping of labels to lambing and grazing behaviours.
	Label
	Lambing Behaviours
	Grazing Behaviours

	ruminating
	
	ruminating

	labour
	agitated, pawing ground, pushing while standing, pushing while lying, pushing neck back skyward, pushing neck back laterally, lamb born
	

	licking
	licking after birth
	

	grazing
	grazing head down
	grazing

	walking
	walking not grazing
	walking

	idle
	standing not pushing, lying idle
	standing, sitting



The process to train the LSTM model:
1. Starting with the coded behaviours for the Lambing Density 2016 and Muresk Lambing 2020 datasets from 4.3.4, the 5s epochs were combined into 10s epochs where the time periods were continuous.
2. The lambing behaviours were labelled with a single behaviour for each 10s epoch. 
3. The grazing behaviours were labelled with a single behaviour for each 10s epoch.
4. The datasets were combined and split into 5-fold cross-validation sets ensuring all samples had an opportunity to be excluded from the training set. The training sets were then augmented with SMOTE data.
5. Train and validation of performance using the CNN-LSTM.
6. The above steps were repeated, excluding the selected ewes for the fine-tuning, creating a training and test set for the individual ewes.
7. Train and validation of the fine-tuning were performed using a warmup phase of 100 epochs, freezing the early stages of the network, before unfreezing all the layers and performing fine-tuning for 20 epochs.
[bookmark: _Toc114725009]4.4 Phase 3: Prediction of time of parturition during a natural 5-week lambing
[bookmark: _Toc114725010]4.4.1 Prediction of time of parturition from Actigraph sensors
Data were collected in June 2019 from 250 lambing ewes at the DPIRD Research Facility near Katanning in Western Australia. In this experiment, all ewes were fitted with colour mounted Actigraph tri-axial accelerometers for a 5-week lambing period. Ewes wearing neck tags with their individual identification were observed continuously during day light hours to record time and day of lambing. Actual time of lambing was recorded for 66 ewes. Time of parturition was predicted using the various statistical methods of Smith et al (2020) that have been previously described in section 4.3.2.
4.4.2 [bookmark: _Toc114725011]Prediction of time of parturition from machine vision
The commercial landscape for sheep-ready sensors has not matured significantly in the period this project has been running. The only sensor system that is suitable for deployment on sheep currently is the AWI developed system. Unfortunately, this is yet to be commercialised and there is no indication of a price point for the system. A benefit-cost analysis for autonomous monitoring over lambing showed that a system would need to be deployed at a cost of less than $5 per ewe in most scenarios. To reach this price point, systems that work per mob rather than per individual are required.  Machine vision is developing rapidly and providing a new opportunity for mob monitoring for important time periods like lambing. These systems can monitor large numbers of animals and can provide real time analysis of animal welfare. Hence, the project moved to an image-based approach for the real-time monitoring of a natural lambing because it was the only system that met the requirements of the project.  
Custom built cameras were installed in four paddocks at the Muresk Institute Farm, near Northam in WA, to test the feasibility of quantifying date of lambing in real-time for ewes. The trial used Merino ewes that had been joined for 35 days in 2021. Single-bearing and twin-bearing ewes were side-branded before lambing with unique three-digit brands on their sides and were each allocated into two mobs for lambing. Within pregnancy status, mobs were supplementary fed during lambing with either a self-feeder or via trail feeding. Subsequently, this resulted in three different scenarios for observation via machine vision: feeding from a self-feeder, feeding from a trail, or grazing in a paddock. Cameras were positioned at the location of self-feeders or the feed trail. In addition, one of the paddocks with a self-feeder also had cameras located away from the feeder that rotated to view various parts of the paddock (Table 8). The cameras ran for the entire duration of lambing.
Table 9.  Paddock, ewe and camera details for the machine vision trial which used Merino ewes during lambing at Muresk in 2021.
	Paddock number
	Number of ewes and pregnancy status
	Camera number
	Camera location
	Camera rotation

	14
	129 single-bearing ewes
	14
	Feed trail
	Scanning 45°

	
	
	15
	Feed trail
	Scanning 45°

	15
	71 twin-bearing ewes
	13
	Feed trail
	Scanning 45°

	
	
	17
	Feed trail
	Scanning 45°

	16
	137 single-bearing ewes
	4
	Self-feeder
	Static

	
	
	5
	Paddock
	Rotating 360°

	
	
	6
	Paddock
	Rotating 360°

	
	
	10
	Paddock
	Rotating 360°

	
	
	101
	Paddock
	Rotating 360°

	
	
	103
	Self-feeder
	Static

	26
	70 twin-bearing ewes
	2
	Self-feeder
	Static

	
	
	102
	Self-feeder
	Static


Camera hardware
The cameras were designed to take photographs, detect ewes, and lambs and the numbers branded on the ewes, and relate the appearance of a lamb/s with a ewe as the time of birth. To achieve these tasks the camera needed a high-resolution camera with a long lens, the ability to pan and enough computing power to run three neural networks. The camera had to be solar-powered and needed the ability to connect to a network. The camera included two computers; one to do the machine learning (ML) computing and a low power watchdog computer that runs 24/7 that wakes up the ML computer during daylight hours (7am to 5:30pm). Both computers need access to real-time clocks (RTC) so that the watchdog computer knows what time to wake up the ML computer and the ML computer knows what time a picture was taken.
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Figure 17. Camera enclosure.
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Figure 18. Camera internal components.
Camera software
The Nvidia Jetson Nano machine learning (ML) computer contains a graphics processing unit (GPU) that is capable for running neural networks much faster than a normal computer containing just a central processing unit (CPU). Python software was written on the Jetson Nano to predict lambing datetimes for the ewes photographed. An approximate sequence of steps conducted by the software are:
1. Take a photo
1. Use a neural network-based object detector to find instances of sheep and lambs in the photo
1. Crop the instances of sheep from the original photo and use a neural network-based object detector to find a string of digits comprising the brand on the side of the ewe.
1. Crop the instances of string of digits from the cropped sheep image and use a neural network-based object detector to find digits in the string
1. Determine if the ewe with a recognised brand is standing near a lamb(s)
1. Record the number of the ewe and the information about the ewe’s proximity to lambs
1. Uses statistics to determine the birth timestamp of a ewes’ lamb(s) by calculating the transition time from when an ewe was seen without lamb(s) to when a ewe was seen with lamb(s)
The cameras experienced several hardware issues due to the short development time frame, resulting in just five cameras collecting decent datasets. Additional real time clock (RTC) problems resulted in issues with the image timestamps. The timestamps were corrected by correlating weather in images from the camera with a working RTC (camera 2), with the weather in the images from the other cameras. Having looked at some of photos of lambs that appear to be a few hours old and comparing the corrected datetimes with their known birth dates, the corrected datetimes are sometimes one day out.
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Figure 19. Example photo of trail from paddock 15 including camera #13 taken by camera #17.
Analysis of lambs per image
Three neural networks where trained to recognise objects in the images collected by the cameras. Those objects being ewes, lambs, and numbers. The neural networks were trained with datasets of images of ewes, lambs, and numbers where the location of those items are known within the image. We hand labelled some of the images collected in this study to enhance the accuracy of the neural network object detectors. As a sanity check the object detectors were run through all the images collected by the cameras and the numbers of sheep and lambs found per image were plotted with respect to time. We would expect to see the numbers of sheep per image to stay the same while the numbers of lamb per image to increase over the duration of recording. The number of lambs trend upwards in Figure 20 confirming the expected increase in numbers of lambs being recorded.
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Figure 20. Ewe and Lamb counts per image as found by the YOLO convolutional neural network object detector for the duration of the study.
[bookmark: _Toc114725012]5. Results
5.1 [bookmark: _Toc114725013]  Farmer workshops 
5.1.1 [bookmark: _Toc114725014]Ideas generated for use of tag technology
The ideas that people came up with that the thought this new technology could be used for included:
1. Matching lambs to their dams and therefore yielding mapping sheep flocks
2. Birth weight (from outside the paddock)
3. Determining when ewes are having lambing difficulty
4. Defining the energy balance of ewes based on behaviour
5. Complete structural assessment of animals by monitoring their gait
6. Determining feed use efficiency in a grazing scenario
7. Measure and improve pasture utilisation
8. Determine the time to shift sheep between paddocks with a lot more accuracy
9. Determine the appropriate amount and timing of supplementation
10. Estimate feed-on-offer based on grazing behaviour
11. Monitoring of sheep normal behaviour and alert when something changes eg.
a. Illness
b. Flystrike
c. Predation
d. Theft
12. Integration with Walk-over weighing integrated to see trends between behaviour and weights
13. Use behaviour information as well as performance information from the tag to assist with animal culling
14. When animals being maintained on self-feeders, determine the amount of time each animal is on the feeder.
15. Understand animals grazing behaviour and determine how far away different animals travel away from the feeder.
16. Use the system to determine animals that are shy feeders and not getting sufficient access to the self-feeder
5.1.2 [bookmark: _Toc114725015]Fleshing out ideas in group discussion
The groups then explored the options that would be required in a system that could be deployed on farm and investigated alert systems that would be required.  These alerts would be set for any change inconsistent with ‘normal’ behaviour.
Key data to be accessed from sensor information:
1. Predicted time of lambing based on mating behaviours
2. Birth weight – if could be achieved?
3. The proportion of the mob that has lambed
4. Dam to lamb matching
5. Birth weight to weaning, define growth rates
6. Mapping the lambing areas on a farm and the relative densities of each
7. Assess joining length, self-draft those animals that don’t return to heat
8. Feed intake assessment and daily intake information, enabling supplementary feeding to be matched

The participants thought that it would be important that the application that was running a tag-based system also had the capability to integrate with other information sources, either automatically or manually.  Integration with weather forecasts was one of these applications. A link to pastures from space was another similar thought. The participants also thought that it would be important to manually enter information like a change in forage type or supplementation so that the appropriate algorithms could be applied.  Participants also thought it would be good to integrate with any system that is developed that can automatically assess weight or condition score. To have a useful and deployable system, participants thought that it would be important to have a personalised dashboard that had real time information displayed on either mobs or individual animals depending on the application. Alerts launched from the system to a phone were thought to be the most useful although the alert route could be determined based on its severity. Low level alerts could go to web or app whereas important and time critical alerts could go to phone. 
Overall, there was a strong engagement of producers and a lot of interest in the application of this technology to sheep grazing systems.
5.2 [bookmark: _Toc114725016]  Phase 1: Development and verification of normal behaviour algorithms
5.2.1 [bookmark: _Toc114725017]In-flock machine-learning and predictions from Actigraph sensors
A MLP was trained in-flock on the nine sheep in the Muresk Barley flock.
Muresk Barley Flock In-Flock Accuracy: 90%
Figure 21. displays a summary of prediction accuracies from recent papers in the field. Note that 68% of these accuracies were generated using validation methods that provide overly optimistic results. Achieving 90% accuracy for the Muresk Barley flock is comparable with the top 40% of publications which is a good result considering we have used the more rigorous validation technique.
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Figure 21. Distribution of ML model prediction accuracies from (L. Riaboff, 2022).
5.2.2 [bookmark: _Toc114725018]Cross-flock machine-learning and predictions from Actigraph sensors 
The Katanning green pasture flock was significantly different from the other four flocks due to its sheep being pregnant. When the ML model was trained on the other four flocks and tested on Katanning, the prediction accuracy was low at 59% indicating that a model trained on non-pregnant sheep did not fare well when used on pregnant sheep. To access the accuracy of the technique the Katanning flock was dropped. The process became:
· Train on three flocks
· Validated on the flock left out
· Cycle each flock as the left-out flock
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Figure 22. Confusion matrices for where each flock is the left-out test flock.
If the ML model is trained on the above four flocks and is, then validated on the pregnant ewes in the Katanning green pasture the result is poor as is shown in Figure 23.
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Figure 23. Confusion matrix for when the model is trained on four flocks and tested on Katanning.
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Figure 24. Confusion matrix where each of four flocks is used as the validation flock and the results are aggregated.
5.2.3 [bookmark: _Toc114725019]Data from GPS sensors
Data collected from the GPS sensors found that the GPS trace spent considerable time outside the paddock boundary. This confirms the results of the stationary receiver log locations over 2 meters away from it’s know. A possible method of removing the noise from the GPS is to run a filter over the results logged by the GPS. The GPS path was found to be predominately within the paddock boundary upon doing this. However, given that some parts of the trace are still outside the paddock boundary it appears that the GPS trace would need to be averaged over a greater number of samples to realise a sensible path. As 13 samples corresponds to an approximate duration of 20 minutes, the amount of detail being lost is significant. In conclusion, the idea of simply filtering the GPS trace to remove the noise appears to be a non-starter.	Comment by Joe Gebbels: ?

One idea of removed the GPS noise is to use a Kalman filter. A Kalman filter is an algorithm which uses a series of measurements and estimates predictions over time to remove noise from a time series of measurements. Kalman filters are often used in situations requiring trajectory optimisation. There are some published accounts of using a combination of GPS measurements and accelerometer data to remove the noise from the GPS (Amin, Bin Ibne Reaz, & Arif Sobhan Bhuiyan, 2014). 
Usually, the accelerometers are in a known and static orientation with respect to their vehicle. This is not the case when mounted on a sheep, which means integrating the acceleration traces into a measure of distance is not possible. 
The behaviour observation data includes the number of steps taken, which will provide a measurement of the distance travelled in each ten second epoch. Perhaps combining the distance travelled and the GPS data into a Kalman filter will result in the removal of a lot of the noise inherent in the GPS measurements. 
To calculate the distance travelled for each ten second epoch, a steps predictor needs to be trained from the acceleration data and the steps observations.
The number of steps listed in all the observations ranged from 0 to 23 steps in a ten second epoch. The initial attempt to train a regressor to predict the number of steps failed with a prediction accuracy of a random result (~33%). The next attempt involved dividing the steps in three buckets:
1. 0 steps
2. 1 – 4 steps
3. 5 – 23 steps
A classifier was then trained to predict which steps bucket an epoch was in and resulted in an accuracy of 61%. This value is too low for it to be integrated by a Kalman filter with the GPS data.
5.3 [bookmark: _Toc114725020]  Phase 2: Prediction of time of parturition when lambing is synchronised 
5.3.1 [bookmark: _Toc114725021]Predictions using statistical methods
The average error between the predicted and actual time of parturition using this method was 10.7 hours using data from the Lambing Density 2016 project. Due to the distribution of the actual birth dates and times across the 240-hour study, random guesses would have resulted in a mean error of 75 hours. This result is comparable to the 5.3-hour error reported by Smith et al. (2020) and would seem to validate the approach in a different lambing environment under commercial conditions. Likewise, both studies were predicting the time of parturition within 12 hours of the actual time for 81 to 84% of ewes, and the predicted error was less than 24 hours for more than 90% of the ewes in our data (Figure 25).  This level of accuracy is sufficient to identify day or birth with confidence which hence contribute to increasing the accuracy of estimating the genetic merit of early-life traits such as weaning weight. 
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Figure 25. Difference between the time of parturition predicted using the Smith et al. (2020) method and the actual time of parturition observed for 56 ewes for the Lambing Density 2016 dataset for Phase 2 of the project.
Accelerometer data from the Muresk Lambing 2020 dataset comprised of 16 days of accelerometer data as compared with 7 days for Smith’s dataset and 10 days for Lambing Density 2016. However, all the births were within a 10-day period, so the 16 days was truncated down to the 10-day period encompassing the births. Smith’s Earth Mover Distance (EMD) matrix method was then applied and the lambing datetime predictions had an average error of over 60 hours. This average error could be reduced to 45 hours by changing some of the parameters of Smith’s technique, e.g., reducing the data blocks from 4 hours to 3 and changing the profile of the activity histograms. Changing the parameters is not a useful method because the best parameters are never known prior to using the technique. It appears that the Smith technique does not produce uniform results across datasets.
5.3.2 [bookmark: _Toc114725022]Predictions using metrics-based machine learning techniques
The third of sheep where the dominant peak in the licking predictions coincide with the parturition timestamp are promising. The binary licking classifier trained on the metrics had an accuracy of 72% which is 22% above a random result. Without further testing it’s not possible to know what affect the accuracy of the classifier has on the ability to identify the obvious peak in licking activity. Perhaps the current classifier could be degraded to a lower accuracy and then accessed as to the number of licking peaks that coincide with lambing. The drop in number of correlations might provide an indication as to what an increase in classifier accuracy would result in with respect to the number of accurately predicted parturition events.
5.3.3 [bookmark: _Toc114725023]Raw acceleration-based machine learning techniques for the prediction of time of parturition using Convolutional Neural Networks
Table 10 lists the architectures and the prediction accuracy. The better TSC results (65.7 – 66.9%) are close to the value gained by the metrics-based technique (66%). 



Table 10. CNN Time Series Classifier Results on the Lambing Density 2016 dataset for Phase 2 of the project
	Deep Neural Network Architecture Name
	Accuracy

	Fully Convolutional Neural Network (FCN)
	61.5%

	Residual Network (ResNet) (Kirk E. Turner, 2022)
	61.0%

	Encoder: hybrid deep CNN inspired by FCN
	65.7%

	Convolutional Neural Network (CNN)
	65.5%

	Multi-Channel Deep Convolutional Neural Network (MCDCNN)
	66.9%



5.3.4 [bookmark: _Toc74625630][bookmark: _Toc114725024]Raw acceleration-based machine learning techniques for the prediction of time of parturition using Long Short Term Memory (LSTM) 
The LSTM has an accuracy of 70% for classifying the ‘Licking after birth’ behaviour. It is at least 3 percent better than metrics-based classifiers and CNNs adapted for time series classification. There is further potential with LSTMs through filtering and splitting the acceleration data into its gravitation and activity components. (Kirk E. Turner, 2022) has shown that there is promise in using LSTM to classify sheep behaviour (see Appendix 10.3).
5.3.5 [bookmark: _Toc114725025]Raw acceleration-based machine learning techniques for the prediction of time of parturition using Transformers
A transformer was trained on 1% of the combined Lambing Density 2016 and Muresk Lambing 2020 datasets.
The transformer trained on 1/100 of the dataset resulted in an accuracy: 61%
Given that only 1% per of the dataset was used, this is a promising result. A dataset was created that was 5% of the available rows, but this caused the training computer to hang. At this stage the cause is not known. It might be a memory limitation or a bug in the software from the publisher. This method shows a lot of promise, especially if the accuracy increases with dataset size.
5.3.6 [bookmark: _Toc114725026]Raw acceleration-based machine learning techniques for the prediction of onset of labour and parturition using combined grazing and lambing data sets
When combining the grazing and lambing behaviour datasets, an accuracy of 80.9% was achieved, with a recall of 0.85 for the licking behaviour. The model struggled to identify the labour behaviours, showing confusion with both the licking and idle behaviours (Figure 26). Full draft paper provided as Appendix 10.4.
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Figure 26. Normalised confusion matrix for the combined grazing and lambing behaviours.
However, fine-tuning on the individual sheep increased the accuracy to an average of 86.3%, promoting the detection of the labour behaviours. In individual cases this resulted in a loss of performance in the licking behaviour recall (Figure 26), but this was not a universal result (Figure 27). Overall, fine-tuning increased the reliability of detection of the labour and licking behaviours providing the basis for further work in detecting the onset of birth, and the time of parturition.
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Figure 27. Normalised confusion matrix for the combined grazing and lambing behaviours, fine-tuned on individual sheep.

5.4 [bookmark: _Toc114725027]  Phase 3: Prediction of time of parturition during a natural 5-week lambing 
5.4.1 [bookmark: _Toc114725028]Prediction of time of parturition from Actigraph sensors
When the data was truncated to a duration of ten days, so that the prediction errors could be easily compared to the previous two datasets, the average error between the predicted and actual time of parturition for 54 ewes using this method was 18 hours. For most sheep the error was low, but a few sheep with large errors increased the average error (Figure 28).
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Figure 28. Difference between the time of parturition predicted using the Smith et al. (2020) method and the actual time of parturition observed for 54 ewes at the Katanning Research Facility in 2019 for Phase 3 of the project.
5.4.2 [bookmark: _Toc114725029]Prediction of time of parturition from machine vision
Statistical prediction of the date of parturition of lambs from individual ewes
The initial algorithm to predict the date of birth for a specific ewe uses the steps:
1. Find all the ewes and lambs in a picture
2. Select only the ewes where the number can be read and is valid
3. If a lamb is with 2.5 body lengths of the ewe, assume that the lamb belongs to the ewe
4. Take the day of the first instance of a lamb belonging to an ewe as the “date of parturition”
The following fig shows the error in days between what camera 6’s (paddock 16) predicted birthdates and the real birthdates. The error being negative means that the camera’s predicted date is after the true birth date.
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Figure 29. Lambing prediction error from simple algorithm run on images from camera 6.
This is the first attempt at a very simple birth date prediction algorithm. Ideally the errors would display a large peak near 0. Negative errors mean that the system predicted the birth after the event, whereas positive errors mean that the system predicted the birth before it happened, which must be caused by another ewe’s lamb being seen near the subject ewe or the system reading the ewe’s number incorrectly. The absolute average error is ~7 days.
Machine Learning prediction of the date of parturition of lambs from individual ewes
The statistical prediction of parturition date relied on the camera identifying an ewe on multiple occasions, near lambs to predict that parturition had occurred. Another option is to train a ML model to detect an instance of a ewe and lamb in an image where it is highly likely that they are lamb and dam. The benefit of have a ML object detector that can recognise when it is looking at a lamb-dam pairing is that only a single image where ewe identification is successful would be required to conclude that a particular ewe has lambed.
A dataset of pictures taken by the cameras were labelled by an expert in sheep behaviour. The expert labelled the dataset by putting boxes around an ewe and lamb(s) where she was sure they were together. Ten thousand images where labelled and a YOLO version 5 object detector was trained on the labelled dataset. Unfortunately, the accuracy of the model was poor i.e., it would miss some lamb to dam pairings and would also some false positives. 
Yolo Lamb-Dam Object detector:  precision: 72%, recall 62%
At this stage we don’t know what size training set would be required for an object detector to learn the subtle differences discernable by a human expert.

6. [bookmark: _Toc114725030]Discussion 
6.1 [bookmark: _Toc114725031] Phase 1: Development and verification of normal behaviour algorithms
6.1.1 [bookmark: _Toc114725032]Machine-learning and predictions from Actigraph sensors
The process of converting accelerometer traces into metrics from which machine learning (ML) models are trained is the most common method used in recent publications regarding predicting sheep behaviour. The additional step of using a Random Forest Classifier (RFC) to select the best metrics (Jamie Barwick, 2018) prior to training a neural network has turned out to be an important step for increasing the accuracy of predictions across the five trial flocks. This process has resulted in cross-flock prediction accuracy for jaw-mounted Actigraph sensors for the behaviours of grazing, ruminating and idle approaching 90%. The cross-flock accuracy for ear-mounted Axivity sensors is 71%. However, the Axivity dataset has not been processed with the newest metrics, so its expected that its accuracy will approach 80%.
The data from these five experiments now provides a unique dataset that can create ML models to predict behaviours on other datasets which do not have any observations. This provides the opportunity of other experiments being mined for conclusions. 
[bookmark: _Toc114725033]6.1.2 Data from GPS Sensors
The steps bucket classifier needs to be improved beyond its current accuracy of 61% before attempting to de-noise the GPS data with a Kalman filter. Perhaps a transformer could be used as the classifier instead of a metrics based MLP. This should be pursued because it has the chance of making the GPS data useable and because it could be used as the basis of a ‘walking’ classifier i.e., a certain number of steps per ten seconds could be classified as walking.
6.2 [bookmark: _Toc114725034] Phase 2 and 3: Prediction of time of parturition 
[bookmark: _Toc114725035]6.2.1 Prediction of time of parturition from accelerometer data
The method recently published by Smith et al. (2020) predicted the time of parturition within 11 to 60 hours of the actual time of parturition when the duration of lambing was truncated to 10-days. The precise reasons for the variable results across different lambing flocks using the Smith technique are not known. However, even an error of 2-3 days would still be acceptable for genetic analysis where adjustment for date of birth is required e.g., when generating breeding values for weaning weight. A more significant limitation of the Smith technique appears to be that the error was much greater when used to predict time of parturition over a normal lambing period of 4-5 weeks. This will probably not be improved significantly on the back of ongoing technology improvements. 
The current limitations of this technique are:
· The method always assumes that a birth has taken place during the period being examined. At this stage, the method cannot determine if a birth has happened or not within a period. It just finds the four-hour block of time that a birth is most likely to have happen. The method needs to be extended with a thresholding function to also indicate the possibility that a birth has not occurred.
· The method’s most effective granularity is four hours. So, it finds the four-hour block of time that is most likely to have contained the time of birth. This limits the accuracy.
The primary goal of the machine learning based techniques is to increase the accuracy beyond what is possible with the statistical techniques developed by Smith et al. (2020). To date, this has not been successful. More work needs to be done on two aspects using neural networks to predict the time of parturition. Currently, the maximum accuracy of any of the DNNs at predicting ‘Licking after birth’ is the 66.9% achieved by the MCDNN variant of a Time Series Classifier (TSC). Further work needs to be done to increase this accuracy. This might involve using an ensemble of networks that vote for the most likely prediction outcome or perhaps using a totally different type of DNN that has also shown promise in classifying time series e.g., Long Short Term Memory (LSTM) DNN. Additionally, more work needs to be done in perfecting the technique in using a DNN licking classifier of limited accuracy to find a single dominant cluster of licking instances within the entire period of the study. Perhaps combining the Smith et al method to narrow down the lambing time prior to employing the TSC may improve performance. 
6.2.2 [bookmark: _Toc114725036]Prediction of time of parturition from machine vision
The machine vision technique using cameras in the lambing paddocks to predict date of parturition clearly shows promise and accuracy should be increased as more time is spent developing algorithms. It will also be improved by using larger datasets to train the constituent machine learning models that form part of the algorithm. The next step is to use more complicated algorithms to reduce the prediction error. The current algorithm measures the distance between a lamb and ewe in the images and decides if the lamb belongs to the ewe if the lamb is within a certain distance. The date of the first instance of a lamb being seen next to an ewe is used as the predicted birthdate. This algorithm is using the output of the sheep, lamb, and number machine learning detectors in conjunction with some logic regarding distances between sheep and ewes. This algorithm could be made more nuanced and complicated to minimise the difference between the observed and predicted birthdates. Another approach is to swap the distance related logic with another machine learning model. The model would look for instances in images of an ewe with a lamb i.e., the resulting object detector would draw boundary boxes around instances of an ewe with a lamb. This maybe the best approach because it is often obvious from the ewes’ and lambs’ body position and relative locations, that they are together. The “obviousness” is quite difficult to implement with logic, but maybe far more effectively implemented in a neural network. Recent improvements in the cameras used (improved zoom) dramatically increases the likelihood of success of this technique.
7 [bookmark: _Toc45718842][bookmark: _Toc114725037]Conclusion 
The commercial landscape for sheep-ready sensors has not matured significantly in the period this project has been running. The only sensor system that is suitable for deployment on sheep currently are the AWI-developed Smart Tags. Unfortunately, this is yet to be commercialised, there is no indication of a price point for the system The current project moved to an image-based approach for the real-time monitoring of a natural lambing because it was the only system that met the requirements of the project. The machine vision technique shows promise and should result in increasing accuracy as more time is spent developing algorithms and using larger datasets to train the constituent machine learning models that form part of the algorithm. Overall, the project has generated important information that will inform the future of autonomous sheep monitoring systems. 

7.2 [bookmark: _Toc114725038]  Key findings
· Neural networks trained on metrics derived from accelerometer data continue to improve with behaviour prediction accuracies approaching 90%.
· Neural networks will struggle to predict behaviours on datasets the are significantly different to the training dataset which implies that large diverse training datasets are required to train neural networks intended to work across diverse environments.
· Neural networks trained on raw acceleration data are improving rapidly thanks to the industries’ emphasis on multi-model networks like transformers.
· [bookmark: _Toc45718843]Computer vision tasks like identifying time of lambing will most likely need neural networks trained on video rather than individual images. 
7.3 [bookmark: _Toc114725039]  Benefits to industry
This project has thoroughly explored the sensor landscape as applicable to sheep and has built foundational data sets and techniques that can inform both future research efforts as well as commercial interests exploring this space. This work has been made publicly available so that technology developments in the future can start from a competitive advantage compared with where this project started.  This project has developed a data set that is several fold larger than any database previously established.  It has investigated the different algorithms that can be deployed to these types of data sets and found those that are most likely to deliver a successful outcome. The potential to reduce the cost of future livestock research projects by automating some of the monitoring is an important outcome of this project.  This has a completely different cost:benefit calculation than the deployment of sensors on commercial farms.  Further automation of the processes used in this project can pave the way for more efficient animal research in the future.
8 [bookmark: _Toc45718844][bookmark: _Toc114725040]Future research and recommendations 
· All accelerometer datasets collected to predict some behaviour using an existing neural network need to collect a small set of observations for a test set so that the model’s accuracy can be verified.
· Computer vision systems need to process video rather than individual images to implement ML trackers so that a sheep’s identity and behaviour can be linked over extended periods of time e.g., a sheep in the process of lambing will often need to be tracked to allow it to be identified.
· Combine the metric-based behavioural models with time series transformers to predict lambing i.e., feed the aggregated output of a metric-based behaviour model into a time series transformer to try and find long time-based patterns involved with lambing
· Use both unsupervised learning and self-supervised learning to boost the effective size of the datasets
· Consider near real-time training of datasets on edge devices to allow unsupervised learning and supervised learning to be merged in near real-time.
· Invest in further automation of sensor systems to allow them to be used by a range of research groups allowing enhanced efficiency of livestock research.
· Throughout the course of this project, machine learning techniques have continued to evolve, future improvements are likely to shed new light on the data set that has been collected through this project.
9 [bookmark: _Toc45718845][bookmark: _Toc114725041]References 
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10 [bookmark: _Toc7517360][bookmark: _Toc43368371][bookmark: _Toc45718846][bookmark: _Toc114725042]Appendix
[bookmark: _Toc7517361][bookmark: _Toc43368372][bookmark: _Toc114725043]10.1.  Machine Learning Metrics
Triaxial acceleration was converted to the following metrics when used to train multi-level perceptron neural networks.
	Metric
	Equation(s) or Details1

	Average Signal Magnitude
	

	Average Signal Magnitude with approximate gravity removed
	

	Maximum Value for x, y, z
	

	Minimum Value for x, y, z
	

	Mean ()
	,  ,  

	Standard Deviation ( )
	,  , 

	Variance for x, y, z
	, ,

	Skewness for x, y, z
	,   ,  

	Kurtosis for x, y, z
	,   ,   

	Energy for x, y, z
	,   ,   

	Spectral Entropy for x, y, z
	,   ,   

	Pairwise correlation between the axes
	,   

	Acceleration difference in 75th and 25th percentile
	

	Acceleration slope difference in 75th and 25th percentile
	

	Kurtosis of acceleration signal magnitude
	

	Kurtosis of the slope of the acceleration signal magnitude
	

	Standard deviation of the acceleration signal magnitude
	

	Standard deviation of the slope of the acceleration signal magnitude
	

	Minimum of the acceleration signal magnitude
	

	Minimum of the slope of the acceleration signal magnitude
	

	Maximum of the acceleration signal magnitude
	

	Maximum of the slope of the acceleration signal magnitude
	

	Mean of the slope of the acceleration signal magnitude
	

	Acceleration signal zero crossing count
	

	Acceleration signal slope zero crossing count
	

	Dominant frequency of acceleration signal
	The frequency from derived from an FFT with the largest amplitude

	Dominant frequency of slope of the acceleration signal
	The frequency from derived from an FFT with the largest amplitude

	Spectral entropy of the acceleration signal
	

	Spectral entropy of the slope of the acceleration signal
	

	The area under the acceleration signal
	

	The area under the magnitude of the acceleration signal
	

	Movement Variation
	

	Acceleration Entropy
	

	Roll (Version 1) Minimum
	Roll calculated using two different formulae.
Version 1:


	Roll (Version 2) Minimum
	Version 2:


	Roll (Version 1) Maximum
	

	Roll (Version 2) Maximum
	

	Roll (Version 1) 25th Percentile
	

	Roll (Version 2) 25th Percentile
	

	Roll (Version 1) 75th Percentile
	

	Roll (Version 2) 75th Percentile
	

	Pitch (Version 1) Minimum
	Pitch calculated using two different formulae.
Version 1:


	Pitch (Version 2) Minimum
	Version 2:


	Pitch (version 1) Maximum
	

	Pitch (version 2) Maximum
	


1 P is the normalized power spectrum. FFT is fast Fourier transform.


[bookmark: _Toc114725044]10.2. Selected metrics used for predicting time of parturition
Twenty eight metrics selected by an Extra Tree Classifier listing in order of priority:
	Name
	Formula if not previously defined

	Y theta average
	

	Acceleration Entropy
	

	Movement Variation
	

	Average Signal Magnitude with approximate gravity removed
	

	Roll (Version 2) Minimum
	

	Pitch (Version 1) Minimum
	

	Standard deviation of the slope of the acceleration signal magnitude
	

	Minimum Value for x
	

	Roll (Version 1) Minimum
	

	Acceleration slope difference in 75th and 25th percentile
	

	Average Signal Magnitude
	

	Pitch (version 1) Maximum
	

	Acceleration signal slope zero crossing count
	

	Acceleration magnitude 25th Percentile
	

	Minimum Value for y
	

	Roll (Version 2) 25th Percentile
	

	Pitch (Version 2) Maximum
	

	Roll (Version 1) Maximum
	

	Pitch (Version 2) Minimum
	

	Roll (Version 2) Maximum
	

	Energy for z
	

	Maximum Value for x
	

	Acceleration magnitude 75th Percentile
	

	Minimum Value for z
	

	Maximum of the slope of the acceleration signal magnitude
	

	Average dynamic body acceleration for z
	TODO formula

	Z theta average
	

	Roll (Version 2) 75th Percentile
	






[bookmark: _Toc114725045]10.3. Published paper (Turner et al. 2022)


[bookmark: _Toc114725046]10.4. Draft paper to be published (Turner et al. 2023)
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ABSTRACT

Classification of sheep behaviour from a sequence of tri-axial accelerometer data has the
potential to enhance sheep management. Sheep behaviour is inherently imbalanced
(e.g., more ruminating than walking) resulting in underperforming classification for the
minority activities which hold importance. Existing works have not addressed class imbal-
ance and use traditional machine learning techniques, e.g., Random Forest (RF). We inves-
tigated Deep Learning (DL) models, namely, Long Short Term Memory (LSTM) and
Bidirectional LSTM (BLSTM), appropriate for sequential data, from imbalanced data. Two
data sets were collected in normal grazing conditions using jaw-mounted and ear-
mounted sensors. Novel to this study, alongside typical single classes, e.g., walking, depend-
ing on the behaviours, data samples were labelled with compound classes, e.g., walking_-
grazing. The number of steps a sheep performed in the observed 10 s time window was
also recorded and incorporated in the models. We designed several multi-class classifica-
tion studies with imbalance being addressed using synthetic data. DL models achieved
superior performance to traditional ML models, especially with augmented data (e.g., 4-
Class + Steps: LSTM 88.0%, RF 82.5%). DL methods showed superior generalisability on
unseen sheep (i.e., F1-score: BLSTM 0.84, LSTM 0.83, RF 0.65). LSTM, BLSTM and RF achieved
sub-millisecond average inference time, making them suitable for real-time applications.
The results demonstrate the effectiveness of DL models for sheep behaviour classification
in grazing conditions. The results also demonstrate the DL techniques can generalise
across different sheep. The study presents a strong foundation of the development of such
models for real-time animal monitoring.
© 2022 China Agricultural University. Production and hosting by Elsevier B.V. on behalf of
KeAi. This is an open access article under the CC BY-NC-ND license (http://creativecommons.
org/licenses/by-nc-nd/4.0/).

1. Introduction
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profiling physiological state, to grazing management prac-
tices [1,2]. However, monitoring sheep behaviour has chal-
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lenges due to the vast spatial area and the substantial number
of animals involved. The classification of sheep behaviour
through observation is not a highly technical skill, but it is a
labour intensive one, and cannot be practically performed at
scale. The use of sensor technology can overcome this gap
to provide real-time information about the productivity,
health, and well-being of the animals. Monitoring sheep
behaviour through tri-axial accelerometers provides a cost
and power-efficient method for performing the monitoring,
aided by the recent miniaturisation of the technology. Taking
advantage of these recent advances, the sheep industry is
looking to apply this to “optimise production, reduce costs
and enhance sustainability” [3].

Accelerometers measure gravitational and inertial acceler-
ation due to movement. They collect data across three axes
and each dimension is recorded simultaneously, representing
three-dimensional movement in the sampled data [4]. One
method taking advantage of the data generated from
accelerometers is the use of machine learning to classify
the behaviours of the sheep based upon the accelerometer
data. However, the balance of the data influences the classifi-
cation process as the imbalances in the data are learned
through the training process. Recent studies have shown
the class imbalance issues when evaluating sheep behaviour
classification using accelerometer data. Fogarty et al. reported
low recall (the proportion of correctly predicted classifica-
tions) for walking behaviours (65.6% for walking versus 90.3%
for grazing) [3], while Barwick et al. reported poor recall for ly-
ing behaviours (6% for lying versus 88% for grazing) [5]. While
there are other contributing factors, such as similarity
between behaviours, in both Fogarty et al. and Barwick
et al.,, the authors attribute the results to data set imbalance
[3,5]. Importantly, often the under-represented behaviours
hold significance. Grazing and ruminating are considered the
most important behaviours for ruminants [6]. However, in
our study ruminating only made up 8.6% of the samples. Ide-
ally, the imbalance could be addressed at the data acquisition
stage. However, as alluded to in Fogarty et al. [3], the large
areas, difficult terrain and the limited time spent expressing
certain behaviours (e.g., walking), compared to grazing and
resting, leads to natural imbalance in the data. Therefore,
alternative methods are needed to overcome the class imbal-
ance present in the data.

A mix of statistical [7] and machine learning models have
been used for classification of sheep behaviours. The machine
learning models include ensemble learning methods [8-10],
decision tree algorithms [2,3,11], instance-based algorithms
[3,9-11], as well as dimensionality reduction algorithms
[3,5,9,12,13]. Although Deep Learning (DL) techniques have
been successfully applied in other applications, there is a lack
of studies making use of DL. Studies have shown that DL can
produce better results given the correct models and data sets
for time series data (which includes accelerometer data)
[14,15]. In contrast to classification of sheep behaviour stud-
ies, DL is more prevalent in the human activity recognition
(HAR) field, which also makes extensive use of accelerometer
data. There is significant research making use of Long Short
Term Memory (LSTM), a Recurrent Neural Network (RNN)
implementation, shown to work well with time series data
[16]. Additionally, similar, or related classes are predicted with

higher accuracy when a bidirectional LSTM is used [17]. Sheep
classification have similar behaviours that are harder to dis-
tinguish (e.g., lying and other behaviours [5]). Additionally,
transitions between states occur within the same time win-
dow, resulting in mixed signals within the same sample.
The transition directions are not specified in the data. There-
fore, the bidirectional nature will aid in the correct classifica-
tion of the behaviours displaying transitions. Feature
selection in the sheep behaviour studies has been a mixture
of statistical [8-12] techniques, but limited to Random Forest
(RF) in terms of Machine Learning methods [2,3,13]. DL has
not featured among the methods, but studies have shown
successful application of Convolutional Neural Networks
(CNN) in the context of LSTM classification models [18-20].

There are various forms of class imbalance, either in the
number of instances, or the density of the instances, but
these differences result in the machine learning techniques
overfitting the majority classes and densities [21]. The class
imbalance issue can be addressed at the separate phases of
the classification pipeline: feature selection, classification
and in the data preparation phases. In this study, the aim
was to compare classifiers in the context of the class imbal-
ance, and the influence of synthetic data on the classifiers.
Therefore, the focus is on addressing the class imbalance in
the data preparation phase. One form of oversampling (creat-
ing new samples) is the generation of synthetic data. Rather
than reusing the existing data in duplicate, the feature space
of the data is used to generate data samples that match the
space. There are multiple mechanisms for performing the
generation of the synthetic data, but one of the most popular
is Synthetic Minority Oversampling Techniques (SMOTE)
[22,23].

SMOTE, drawing inspiration from techniques applied to
handwritten character recognition, applies changes to the
feature space rather than the data space. Examples are gener-
ated by interpolating between several minority class exam-
ples that are nearest neighbours [22,24]. There are over 100
variants of SMOTE, with differences in how the new samples
are distributed [23]. Polynom-fit-SMOTE [25] is based on curve
fitting methods that find the coefficients of a polynomial that
fit the minority instances with different topology options,
such as ‘star’, ‘polynomial’, ‘bus’ and ‘mesh’. These generate
samples that are relatively far apart and therefore the syn-
thetic data is more scattered within the decision boundaries
of the minority class [21]. Kova'cs [21] performed an empirical
comparison of 85 different variants against 104 imbalanced
data sets, concluding that the polynom-fit-SMOTE was the
best performer for an unseen set of data showing imbalance
issues. Baseline SMOTE has been used to address class imbal-
ance issues for many instances of accelerometer data [26-29],
but as noted by Kova’cs [21] many comparisons for data syn-
thesis are performed against baseline SMOTE where advances
have been made with other variants. Therefore, our compar-
ison will focus on polynom-fit-SMOTE.

The objectives of this study were to evaluate (i) the addi-
tion of synthetic data and (ii) DL techniques to the classifica-
tion of sheep behaviour. Automating sheep behaviour
classification is the first step in improving productivity
through physiological state profiling. However, class imbal-
ance, inherent from natural behaviour bias and sampling

Please cite this article as: K. E. Turner, A. Thompson, I. Harris et al., Deep learning based classification of sheep behaviour from accelerometer
data with imbalance, Information Processing in Agriculture, https://doi.org/10.1016/j.inpa.2022.04.001




https://doi.org/10.1016/j.inpa.2022.04.001



INFORMATION PROCESSING IN AGRICULTURE XXX (XXXX) XXX 3

techniques, reduces the accuracy of behaviour classification
as the machine learning algorithms inherit the bias from
the data set. An evaluation of the literature shows only rudi-
mentary techniques of addressing the class imbalance have
been applied to the sheep behaviour classification task, and
DL techniques have not been thoroughly investigated. There-
fore, our study contributes to the understanding of the classi-
fication of sheep behaviour, providing a foundation for the
development of real-time monitoring systems.

The rest of the paper is organised as follows: Section 2
describes the research methodology while Section 3 presents
the results and analysis. Discussions are given in Section 4
with conclusions in Section 5.

2. Materials and methods

2.1. Animals and research site

All procedures described were performed according to the
guidelines of the Australian Code of Practice for the Use of
Animals for Scientific Purposes 2013 and received approval
from the Murdoch University Animal Ethics Committee
(R3039/18). Two experiments were completed at the Muresk
Institute Farm, near Northam in Western Australia (31°
44/59"S, 116°40'13"E). The two experiments represented differ-
ent grazing scenarios; (i) Muresk Dry Pasture - Merino ewes
(18 months of age) grazed a 3-hectare field of dry annual pas-
ture for 7 days from 7th to 13th December 2018; (ii) Muresk
Stubble - Merino ewes grazed a 3-hectare field of barley crop
residues for 7 days from 1st to 8th February 2019. In both
cases the total amount of plant biomass grazed exceeded 2
000 kg dry matter/ha.

Both experiments involved a total of 30 ewes. A subset of
the ewes (Muresk Dry Pasture: 9 sheep and Muresk Stubble:
10 sheep, disjoint from Muresk Dry Pasture) were fitted with
jaw mounted ActiGraph sensors (ActiGraph, Pensacola, Flor-
ida, USA) and ear mounted Axivity sensors (Axivity Ltd, New-
castle, UK) for the seven days (Fig. 1, Fig. 2).

Fig. 1 - Sheep in a pen at Muresk Institute Farm, wearing the
full set of sensors.

Ear tag sensor
(Axivity)

Halter sensor
(ActiGraph)

Fig. 2 - Schematic drawing of halter mounted ActiGraph
sensor under the jaw and the ear mounted Axivity sensor.
The three axes (%, y, z) are simultaneously sampled,
representing three-dimensional movement.

Each of the ewes was also branded on each side with a
unique paint brand to enable the ewes to be identified in
the video recordings.

2.2.  Data set description

The ActiGraph and Axivity sensors recorded tri-axial
accelerometer data. The ActiGraph sensors were sampled at
30 Hz and the Axivity sensors at 25 Hz. The sensors ran for four
days after a 3-day adaptation period, while the sheep were also
observed during daylight hours through video recordings. A
subset of the videos was subdivided into ten second blocks,
and observations were made to allocate behaviours to the
activities in the ten second blocks. The behaviours recorded
were sitting, standing, walking, grazing and ruminating. These
can be subdivided into two categories: Movement (sitting, s-
tanding, walking), and Feeding (grazing, ruminating). A sheep
could undertake multiple activities within the ten second
block, such as sitting and grazing, or be a single behaviour, such
as standing. However, the Feeding categories were always
recorded in connection with a movement behaviour.

The combining of observations resulted in thirteen sepa-
rate categories. The breakdown of observation combinations
is shown in Table 1. The overall class imbalance can be seen
in the ‘Muresk Dry Pasture’ column, with significant differ-
ences between the highest (9 757 for sitting) and lowest (1
for walking_grazing_ruminating) observations.

The classification pipeline is shown in Fig. 3. It has four
key modules: data preparation, data augmentation, classifica-
tion and evaluation. Detailed descriptions of the modules are
given below.

2.3. Data preparation

The raw data was provided as a series of comma separated
values (CSV) files: two for each sheep. One containing the
ActiGraph jaw mounted data, and the other containing the
Axivity ear tag data. Each row contained a sheep identifier,

Please cite this article as: K. E. Turner, A. Thompson, I. Harris et al., Deep learning based classification of sheep behaviour from accelerometer
data with imbalance, Information Processing in Agriculture, https://doi.org/10.1016/j.inpa.2022.04.001




https://doi.org/10.1016/j.inpa.2022.04.001



4 INFORMATION PROCESSING IN AGRICULTURE XXX (XXXX) XXX

Table 1 - Breakdown of observation combinations. Sheep could undertake multiple activities within a 10 s window, forming

compound classifications. Data for two sample sheep (from Muresk Dry Pasture) are provided, as well as the totals for the
Muresk Dry Pasture (9 sheep) and Muresk Stubble (10 sheep).

Behaviours Sheep #7 Sheep #9 Muresk Dry Pasture Muresk Stubble
sitting 1024 2 068 9757 2 469
standing_grazing 815 426 6 652 5253
standing 858 526 6 295 6 392
standing_ruminating 237 197 2 088 1 684
sitting_ruminating 73 197 1498 836
walking 151 72 907 1715
standing_walking_grazing 68 63 888 5253
walking_grazing 56 34 653 218
standing_walking 63 34 380 1470
standing_walking_ruminating 7 1 39 89
walking_ruminating 11 2 14 14
sitting_walking 0 0 4 11
standing_walking_grazing_ruminating 0 0 3 3
walking_grazing_ruminating 0 0 1 1
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Fig. 3 - The classification pipeline showing the four phases of the classification process. The annotated data was augmented
with SMOTE synthetic data, and input into four classifiers. For LSTM and BLSTM, the raw accelerometer data was passed
through a CNN.

timestamp, the observed behaviours, the additional observa- e The data sets were merged by the timestamps to pro-
tions and finally the accelerometer data for the time window. duce one large set of columnar data. While merging

Using Pandas and Numpy Python libraries the two files for the files, the observations were validated to ensure they
each sheep were loaded and merged as follows: matched between the two sources.
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e The observed behaviours were encoded into discrete
labels, matching the grouped behaviours. For example,
if standing and grazing were observed, they were given
the label standing_grazing.

e The data with labels that had fewer than 30 samples
were removed from the data set. These represented
classifications that had too few data points to be useful
to classify.

e The unused columns (study name, sheep identifier,
timestamp, observed behaviours and additional obser-
vations, including the number of steps except for the
4-Class + Steps data set) were not included in the final
data set for analysis.

Seven data sets were created from the observed beha-
viours, using both Muresk Dry Pasture (MDP) and Muresk
Stubble (MS) experiments as detailed below:

(i) 9-Class for MDP: The unique, combined 13 classes with
distinct classes for each combination, with the extreme
minority classes removed. This resulted in 9 classes.

(ii) 3-Class for MDP: A data set with 3 distinct classes: graz-
ing, ruminating and other, where other was all the other
behaviours that did not have ruminating or grazing.
The 4 samples that were labelled as ruminating and
grazing were dropped.

(iii) 4-Class for MDP: A data set with 4 distinct classes: graz-
ing, ruminating, walking, and other, where the combina-
tion of ruminating and grazing with walking were
allocated to the feeding category.

(iv) 4-Class + Step for MDP: A second data set with the 4 dis-
tinct classes grazing, ruminating, walking, and other as
above. In addition to the accelerometer data, the num-
ber of steps taken by the sheep, as observed from the
video footage, was also included in the data for
classification.

(v) 4-Class + Steps for MS: The 4-Class + Steps test for MDP
was replicated with the accelerometer data from Mur-
esk Stubble.

(vi) 4-Class + Steps Leave one class out for MDP: The 4-
Class + Steps test was replicated with 9-fold cross vali-
dation by training on 8 sheep, and testing on the 1 left
out.

(vii) 4-Class + Steps generalisation for both MDP and MS: The
generalisation of the classification methods for the best
performing classifiers were performed by training on
one experiment, and tested with the second. This was
replicated in both directions training on MDP and test-
ing on MS, and then training on MS, and testing on
MDP.

The prepared data was split into 5-fold cross-validation
sets, ensuring all samples had an opportunity to be excluded
from the training set. These sets were marked as the baseline
sets, and were saved to CSV files for use with each classifier.
Likewise, after the addition of SMOTE synthetic data, the aug-
mented data sets were saved to CSV files, and served as the
input for each classifier.

2.4. Data augmentation

Polynom-fit-SMOTE, as implemented by the smote-variants
Python library, was used to generate synthetic samples that
match the data distribution. Two different topologies were
tested in preliminary tests, ‘star’ and ‘mesh’, with the results
for ‘mesh’ being slightly better.

2.5. Classification

The baseline and SMOTE augmented data sets were used to
train the classification models. The trained models were then
evaluated against the test sets of each fold. There were four
different classification methods defined as follows:

2.5.1. Long Short Term Memory (LSTM)

LSTM is a form of RNN that is more robust, overcoming
problems RNNs have with long term dependencies [30].
Accelerometer data is sequential. Without the memory
capabilities of the LSTM, the sequential nature would be
lost, losing information important for classification of the
behaviours [16]. A combination of a CNN and LSTM was
implemented using TensorFlow in Python using the Keras
libraries to implement the models. The CNN was used for
feature selection, configured based upon the research of
Deep and Zheng [19], where they had a similar CNN and
LSTM hybrid model for HAR data. The data was collated
as an array of the accelerometer data: 900 data points for
the ActiGraph data, and 750 for the Axivity data. This data,
when combined, produced an array of 1 650 columns. The
array was input into two 1D convolution layers, with a ker-
nel size of 6, a filter size of 128, and using ReLU activation.
The output of the convolutions was then passed through a
dropout layer, to prevent over-fitting. Next, to reduce the
complexity, the data was passed through a maxpooling
layer with a pool size of 2. Finally, the feature selection
was performed by passing the output of the maxpooling
layer, through a dense layer, selecting 115 features. The
number of features was determined through testing with
different values to find the optimal value with the training
data. The output of the feature selection was then fed into
a LSTM layer to perform the classification. The results of
the LSTM layer were then passed to a dense layer using
softmax activation, to select for the number of classes in
the training set.

2.5.2. Bidirectional Long Short Term Memory (BLSTM)
BLSTM introduces a bidirectional pass over the data, forwards
and backwards. Given the 10 s epoch, a sheep may undertake
multiple behaviours within the same epoch. There are transi-
tions in both directions within the same epoch, e.g., stand-
ing_walking records both standing to walking and walking to
standing transitions. Given the bidirectional nature of the
transitions, applying the bidirectional LSTM may improve
the classification results. The implementation for this classi-
fication method followed the same design as the CNN LSTM
form, however a bidirectional LSTM was used instead of a sin-
gle direction LSTM.
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2.5.3.  Support vector Machines (SVM)

SVM is a machine learning technique based on statistical
learning theory [31], which classifies by minimizing real error,
developing a hyperplane that separates the samples into two
categories. The aim is to separate the two points as much as
possible to minimise the inaccuracies in predictions [32]. SVM
is a binary classifier, but can be applied to multiclass prob-
lems by applying the one-versus-one technique [33]. SVM
classification was performed using Scikit-learn’s [34] imple-
mentation. A radial basis function (RBF) kernel was used with
a regularisation parameter of 1.0, and gamma to set scale.

2.5.4. Random Forest (RF)

RF is a type of ensemble learning where the feature set is ran-
domly split for use in decision trees. The results of the indi-
vidual trees are then combined into a classification
decision. The random nature of the feature selection splits,
leads to a more robust model that is resistant to overfitting
[35]. RF classification was performed using Scikit-learn’s
implementation [34], with 100 trees.

2.6. Evaluation metrics

The evaluation of the results was performed using a confu-
sion matrix which maps the actual values and the predicted
values to determine the True Positive (TP), True Negative
(TN), False Positive (FP) and False Negative (FN) results of
the classification. From these values the following were
calculated:

TP+ TN
Aceuracy = g pp BN ¢ 1007 @
.. TP
Precision = TP 1 TP (2)
TP
Recall = TP+ EN (3)

Precision x Recall

F1 = Score = 2 x g ocision + Recall @

Accuracy by Eq. (1), the percentage of samples correctly
classified, gives an overall performance indication of the clas-
sification. Precision by Eq. (2) measures what fraction of pre-
dictions that gave a positive class, were actually positive.
Recall by Eq. (3) (also referred to as sensitivity) indicates what
fraction, of all positive samples, were correctly predicted as
positive by the classifier. F1-Score by Eq. (4) combines the pre-
cision and recall into one value for comparison, in the form of
the harmonic mean.

The following metrics were used to aggregate the results:

(i) Weighted Average takes the metric and calculates the
average weighted by the support (the number of occur-
rences of each class in the test set).

(i) Macro Average is the unweighted mean. Support is not
taken into account.

(iii) Minor Average takes the metric and calculates the aver-
age weighted by the inverse of the support. This pro-
motes the minority classes.

3. Results

3.1. Test environment

All tests were performed on an AMD Ryzen 5 3600 6-Core with
32 GB RAM, with an NVIDIA GeForce RTX 2060 with 6 GB RAM,
running Linux Mint 20 with kernel version 5.4.0-60.

3.2.  Classification

The overall accuracy results show that LSTM, augmented
with SMOTE data, produced the highest accuracy for the
small class sets (3-Class: 88.5%, 4-Class: 87.3%;Table 2). How-
ever, for the entire 9 classes, RF with SMOTE data was the
highest (72.4%).

The addition of classes resulted in a reduction in accuracy.
Attempting to distinguish walking from the other categories
from the 3-Class to 4-Class studies resulted in a drop from
88.5% to 87.3%. Examining the confusion matrix, the accuracy
of walking was much lower, showing considerable confusion
with grazing as well as the other (sitting and standing) classes
(Fig. 4 (a)). Walking had the smallest number of samples for
the data set, with 1 291 samples, versus 3 639 for ruminating,
8 193 for grazing and 16 052 for other. Examining the raw
accelerometer data for the failures, the mixture of inactivity
and activity within the recorded data can result in failures
to detect the walking activity. Fig. 5 shows the raw accelerom-
eter data of a false negative result where a similar walking
activity is seen for the first 5 to 7.5 s of the epoch before still-
ing into inactivity. Even with a majority of the time showing
activity it resulted in an incorrect prediction. However, once
the number of steps was added to the classification process,
the accuracy of the walking improved from 0.43 to 0.69
(Fig. 4 (b)). There is still some confusion with grazing, but dis-
tinguishing walking from other activities drops from 0.31 to
0.09.

Comparing the DL methods, BLSTM accuracy was close to
LSTM. Examining the details of the individual metrics for the
9-Class study, BLSTM was ahead of LSTM for precision, while
having equivalent recall and F1-Score (Table 3). With the
greater number of classes, and class imbalance present,
BLSTM resulted in slightly better results for the minority
classes. The use of BLSTM does introduce a training cost with
the training and evaluation time for BLSTM taking 61% longer
to complete than LSTM (for the 9-Class study). RF was the
most efficient to train and evaluate, while SVM was the worst
(Table 4). However, given the total time of testing for LSTM
was 14.5 s for 28 988 samples, the average inference time is
0.5 ms, supporting real-time inferences.

The 4-Class + Steps tests on the Muresk Dry Pasture exper-
iment were replicated with a second flock, Muresk Stubble, to
validate the results. The overall F1-Score decreased for the
second set of sheep, but maintained the performance order,
with BLSTM and LSTM outperforming RF and SVM (Table 5).
However, RF was closer to BLSTM and LSTM than in the first
experiment (LSTM = 0.83, RF = 0.82). Combining the data sets,
LSTM maintained the performance from the Muresk Dry Pas-
ture results, with an F1-Score of 0.88. The performance for
detecting walking and ruminating dropped for the second
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Table 2 - Classification accuracy (%) for Muresk Dry Pasture. The results are shown for each classifier, taking the average of the

5 x Cross validation folds for the baseline, and SMOTE augmented data sets.

3-Class 4-Class 4-Class + Steps 9-Class
Baseline SMOTE Baseline SMOTE Baseline SMOTE Baseline SMOTE
BLSTM 78.7 87.7 73.9 85.8 82.9 87.4 61.7 70.4
LSTM 83.3 88.5 75.9 87.3 81.8 88.0 61.5 70.5
SVM 77.6 76.8 74.7 74.1 77.0 76.0 59.6 58.4
RF 83.9 83.0 81.2 81.2 81.7 82.5 71.3 72.4
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Fig. 4 - The normalised confusion matrix for LSTM with SMOTE data for Muresk Dry Pasture. In both cases a 4-class study
was undertaken, with only accelerometer data present in (a), and the steps observations, in addition to the accelerometer
data, shown in (b). The addition of the steps improved the results for walking, reducing the confusion with the other

movement behaviours.

experiment, having difficulty distinguishing grazing and walk-
ing behaviours (Fig. 6).

3.3. Generalisation across data

To demonstrate the generalisability performance of the DL
methods, we performed two sets of tests: i) Leave one class
out cross validation on the Muresk Dry Pasture data set and
ii) Train and test across data sets, i.e., train the techniques
on one data set and test on the other one. The results of the
Leave one class out cross validation approach are shown in
Table 6, while the results of the second study are shown in
Table 7. The results in Table 6 show that BLSTM was best able
to generalise the results when training within the same set,
the additional pass over the data resulting in a slight improve-
ment over LSTM. However, the DL methods outperformed RF
and SVM by a larger margin, RF and SVM showing a larger loss
of performance (SMOTE Weighted Average F1-Score reduc-
tion; BLSTM: 0.04, LSTM: 0.05, SVM: 0.12, RF: 0.17). The results
in Table 7 show that the DL methods can be generalised
between the experiments. There was some loss in perfor-
mance for DL, but the loss is much smaller than compared
to SVM and RF. Additionally, the performance is improved

when the training sample size is larger, as is seen when train-
ing on Muresk Stubble, and testing on Muresk Dry Pasture, as
Muresk Stubble has the larger data set.

3.4.  Data synthesis

Data synthesis improved the classification results. For the 4-
Class + Steps classification, the improvements with the addi-
tion of the SMOTE synthetic data can be seen with improve-
ments across three of the four classes (Fig. 7, note Fig. 4 (b),
Fig. 6 (a) and Fig. 7 (b) are the same confusion matrix). The
improvements for walking were dramatic, improving from
just 0.20 to 0.69. However, this was not a universal improve-
ment. Considering the accuracy results for the 3-class study
for the individual sheep, SMOTE improved the results for
LSTM for Sheep #7 by 9.8%, whereas the results decreased
for Sheep #9 by 11.1% (Table 8). Similarly, for SVM and RF in
the 3-Class study the addition of synthetic data results in a
drop in accuracy. However, looking at the breakdown of the
changes with the 9-Class study for Sheep #9, the synthetic
data does improve the results for the minority classes (minor
average), at the cost of the majority classes (Table 9). Addi-
tionally, the use of SMOTE does result in improved precision
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Fig. 5 - Sample raw accelerometer accelerometer data for walking observations for Muresk Dry Pasture. The left column
represents the accelerometer data captured by the halter sensor. The right column represents the data from the ear sensor. (a)
was incorrectly identified as grazing rather than walking. (b) and (c) are samples of correctly identified walking activities.

Table 3 - 9-Class results summary for Muresk Dry Pasture (9 sheep). The best results for each category are highlighted in bold.
The results are split into summary statistics with the weighted average showing the results focused on the majority class,

the macro average showing the balanced results and the minor average showing the results highlighting the minority
classes.

BLSTM LSTM SVM RF
Baseline SMOTE Baseline SMOTE Baseline SMOTE Baseline SMOTE Support

Weighted avg

Precision 0.56 0.70 0.56 0.69 0.51 0.52 0.67 0.69 28988
Recall 0.62 0.70 0.61 0.70 0.60 0.58 0.71 0.72 28988
Fl-score 0.58 0.69 0.58 0.69 0.52 0.53 0.66 0.70 28988
Macro avg

Precision 0.32 0.45 0.33 0.45 0.27 0.29 0.44 0.44 28988
Recall 0.30 0.46 0.31 0.45 0.23 0.26 0.33 0.39 28988
Fl-score 0.29 0.43 0.31 0.42 0.21 0.25 0.33 0.39 28988
Minor avg

Precision 0.25 0.35 0.26 0.35 0.21 0.23 0.34 0.34 28988
Recall 0.23 0.35 0.24 0.35 0.18 0.20 0.25 0.30 28988
Fl-score 0.23 0.33 0.24 0.32 0.17 0.20 0.26 0.30 28988
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Table 4 - 9-Class full study running times (seconds) for Muresk Dry Pasture. Training for all 5 folds. Testing was the time to

evaluate all 28 988 samples.

Training Testing

Baseline SMOTE Baseline SMOTE
BLSTM 1731.5 8314.6 24.7 24.5
LSTM 1200.1 5157.2 14.4 14.5
SVM 1716.0 11102.5 472.2 1384.3
RF 272.5 1371.8 1.0 1.2

Table 5 — A comparison of the weighted average F1-Scores for 4-Class + Steps augmented with SMOTE synthetic data for

Muresk Dry Pasture and Muresk Stubble.

Muresk Dry Pasture Muresk Stubble Combined
Sheep #7 Sheep #9 9 Sheep Sheep #5 Sheep #8 10 Sheep
BLSTM 0.80 0.78 0.88 0.81 0.85 0.83 0.87
LSTM 0.73 0.77 0.88 0.58 0.76 0.83 0.88
SVM 0.77 0.82 0.72 0.79 0.80 0.70 0.69
RF 0.84 0.88 0.82 0.84 0.90 0.82 0.83
?:D 5“:1)
] 0.8 g 0.01 0.02 08
& & '
_£ 0.6 & 008 00l 0.6
8 ° | £ °
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o &0 o 20
E £ 0.4 E £ 0.4
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) 0.2 ) 0.2
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other mmiﬁating walking
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(a) Muresk Dry Pasture

other mmiﬁating walking
Prediction label

grazing
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Fig. 6 - The normalised confusion matrix for the SMOTE augmented LSTM classification of the 4-Class + Steps studies.
Muresk Dry Pasture (a) shows a stronger performance with the ruminating and walking classes, compared to Muresk Stubble

(b)-

with the single sheep tests. In the case of walking for RF, the
use of SMOTE improved the precision from 0.00 to 0.62
(Table 10).

4, Discussion

4.1.  Classification

One focus of this study was to compare DL classification to
alternative machine learning techniques. With the smaller
number of classes, LSTM and BLSTM outperformed both RF
and SVM for the full 9 sheep study. Additionally, the DL meth-
ods showed to generalise better between the two flocks of

sheep, maintaining a higher performance over RF and SVM,
when training on one experiment and testing on the other.
However, the success of DL appears to be a factor of the data
set size, with the LSTM and BLSTM showing inferior perfor-
mance to both RF and SVM with the single sheep tests and
performing better in the generalisation tests when there
was more data. This is also reflected in the results for the 9-
Class test. Creating unique classes by combining the beha-
viours, reduced the number of samples with which to train
each class. This resulted in poorer performance overall in
the 9-Class test. RF was the top performer in this case, but
DL with the assistance of the synthetic data is approaching
the results of RF. Further investigation with a larger study
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Table 6 — Muresk Dry Pasture 9 x Cross validation Leave one class out 4-Class + Steps test. The methods were trained on 8

sheep and tested on 1 sheep that was excluded from the training data.

BLSTM LSTM

Baseline SMOTE Baseline SMOTE

SVM RF
Baseline SMOTE Baseline SMOTE Support

Weighted avg

Precision
Recall
F1-score
Macro avg
Precision
Recall
F1-score
Minor avg
Precision
Recall
F1-score

0.76 0.85 0.83 0.84
0.77 0.84 0.82 0.83
0.76 0.84 0.82 0.83
0.74 0.78 0.74 0.74
0.63 0.77 0.68 0.75
0.67 0.77 0.68 0.74
0.42 0.44 0.42 0.42
0.36 0.44 0.39 0.43
0.38 0.44 0.39 0.42

0.58 0.60 0.58 0.66 29175
0.64 0.64 0.60 0.64 29175
0.58 0.60 0.55 0.65 29175
0.54 0.55 0.58 0.54 29175
0.44 0.47 0.35 0.58 29175
0.45 0.48 0.35 0.55 29175
0.32 0.32 0.33 0.30 29175
0.25 0.27 0.20 0.33 29175
0.27 0.28 0.21 0.31 29175

Table 7 — The generalisation tests between the two experiments, Muresk Dry Pasture (MDP) and Muresk Stubble (MS). The 4-

Class + Steps model was trained on one experiment and tested on the second experiment. There were 19 distinct sheep, 9 fo
MDP, and 10 for MS. This was performed both ways for each classifier.

Classifier Train Test Precision Recall F1-Score Support
BLSTM MDP MS 0.75 0.63 0.61 24402
BLSTM MS MDP 0.81 0.67 0.67 29175
LSTM MDP MS 0.78 0.69 0.71 24402
LSTM MS MDP 0.85 0.71 0.74 29175
SVM MDP MS 0.30 0.35 0.30 24402
SVM MS MDP 0.50 0.29 0.32 29175
RF MDP MS 0.31 0.35 0.33 24402
RF MS MDP 0.50 0.33 0.37 29175
2 2
S 0.05 0.03 0.01 0.8 S 0.03 0.02 0.03 0.8
5 5
z 0.12 0.01 0.6 5 0.6
g27s 2s
= =
o 20 o &0
EE 0.4 Eg 0.4
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o0 0.2 o 0.2
£ £
= 0.30 0.06 0.20 Z- 021 0.09 0.01
< ©
z z
grazing other ruminating walking grazing other ruminating walking

Prediction label

(a) Baseline

Prediction label

(b) SMOTE augmented

Fig. 7 - The normalised confusion matrix for the LSTM classification of the Muresk Dry Pasture 4-Class + Steps study. The
baseline result (a) was performed with the raw accelerometer data. The addition of SMOTE synthetic data (b) shows improved
classification and less confusion for the minority classes.

would be useful to determine if DL can show superior perfor-
mance over RF with more data.

Breaking

down the individual components in the 9-Class

test, the DL methods showed to be more beneficial to the

minority classes, providing some successful classification
results where there were none for RF. Given the different
advantages of RF and the DL methods, RF performing better
for the majority classes, and DL for the minority classes,
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Table 8 — Muresk Dry Pasture 3-Class accuracy results by data set size (%). Sheep #7 contained 3 356 samples, Sheep #9 3 590

samples, and the full study 29 175 samples. Sheep #7 and Sheep #9 have similar sizes, but different class distributions.

Sheep #7 Sheep #9 Full Study

Baseline SMOTE Baseline SMOTE Baseline SMOTE
BLSTM 75.3 77.9 72.0 78.3 78.7 87.7
LSTM 65.8 75.6 85.9 74.8 83.3 88.5
SVM 82.2 78.0 86.1 84.9 77.6 76.8
RF 86.7 84.5 92.5 89.3 83.9 83.0

Table 9 - Muresk Dry Pasture 9-Class results summary for Sheep #9. The best results for each category are highlighted in bold.
The results are split into summary statistics with the weighted average showing the results focused on the majority class,

the macro average showing the balanced results and the minor average showing the results highlighting the minority

classes.

BLSTM LSTM SVM RF

Baseline SMOTE Baseline SMOTE Baseline SMOTE Baseline SMOTE Support
Weighted avg
Precision 0.74 0.79 0.61 0.74 0.71 0.77 0.82 0.83 3588
Recall 0.78 0.72 0.64 0.67 0.78 0.75 0.86 0.84 3588
Fl-score 0.74 0.74 0.55 0.69 0.72 0.75 0.84 0.83 3588
Macro avg
Precision 0.39 0.45 0.37 0.43 0.37 0.39 0.45 0.49 3588
Recall 0.38 0.44 0.19 0.42 0.29 0.42 0.46 0.50 3588
F1-score 0.36 0.42 0.20 0.38 0.28 0.37 0.45 0.48 3588
Minor avg
Precision 0.30 0.33 0.28 0.32 0.28 0.29 0.34 0.37 3588
Recall 0.28 0.33 0.14 0.31 0.22 0.32 0.34 0.37 3588
F1-score 0.27 0.31 0.16 0.28 0.21 0.28 0.34 0.36 3588

Table 10 — 9-Class precision for Muresk Dry Pasture Sheep #9. The precision results for the individual classes are shown fo

each of the classifiers, with SMOTE synthetic data (S) and the baseline (B) without synthetic data.

BLSTM LSTM SVM RF

B S B S B S B S Support
sitting 0.91 0.97 0.64 0.90 0.83 0.93 0.94 0.97 2068
sitting, ruminating 0.40 0.49 0.84 0.46 0.33 0.33 0.85 0.60 168
standing 0.63 0.49 0.61 0.40 0.65 0.70 0.77 0.73 526
standing, grazing 0.62 0.79 0.70 0.81 0.68 0.65 0.69 0.71 426
standing, ruminating 0.34 0.50 0.41 0.47 0.75 0.60 0.77 0.74 197
standing, walking 0.00 0.04 0.00 0.05 0.00 0.00 0.00 0.03 34
standing, walking, grazing 0.00 0.04 0.00 0.19 0.00 0.00 0.00 0.00 63
walking 0.61 0.71 0.10 0.57 0.07 0.28 0.00 0.62 72
walking, grazing 0.00 0.02 0.00 0.06 0.00 0.00 0.00 0.00 34

one potential optimisation for the classification implementa-
tion would be to employ both methods in the training pro-
cess. RF could be used to detect the majority behaviours,
and LSTM to identify the minority behaviours. This way the
training process will work to the strengths of the classifica-
tion models, resulting in an overall higher performance. At
inference time, both models can be evaluated with a confi-
dence factor to determine the appropriate classification
where the model inferences are in conflict. The combination
would lead to better overall accuracy for both majority and
minority classes.

While a greater number of classes may result in better pre-
dictions for subsequent analysis, the inferior performance,

with the 9-Class classification, degrades confidence in the
outcomes. The importance of detecting behaviours for speci-
fic purposes, for example accurately predicting ruminating and
grazing behaviours in order to predict food intake, may prove
both more practical and more valuable. As seen by the 3-Class
test, a much higher accuracy for the ruminating and grazing
behaviours can be achieved. The introduction of walking in
the 4-Class test resulting in a reduction of accuracy, shows
that there is a cost in introducing more classes.

Walking is harder to classify than the other movement
behaviours. Even as part of the labelling task this can be chal-
lenging. For example, determining the difference between
steps taken while grazing, as distinct from steps taken while

Please cite this article as: K. E. Turner, A. Thompson, I. Harris et al., Deep learning based classification of sheep behaviour from accelerometer
data with imbalance, Information Processing in Agriculture, https://doi.org/10.1016/j.inpa.2022.04.001




https://doi.org/10.1016/j.inpa.2022.04.001



12 INFORMATION PROCESSING IN AGRICULTURE XXX (XXXX) XXX

walking, is hard. This may require specifying a threshold on
the number of steps, or distance travelled. The tests in this
study also showed that the models have difficulty predicting
the walking behaviour from accelerometer data only, confus-
ing it with grazing and other behaviours. However, the addi-
tion of the steps to the classification improved the success
in correctly identifying the walking behaviour. The data col-
lected here is not representative of a real world usage scenar-
io, as the number of steps were obtained via manual
observation. However, it demonstrates that additional data
to the accelerometer data would be beneficial in identifying
the walking behaviour. For example, studies have shown that
gyroscope-based sensors assist in identifying behaviours [10],
while inclusion of tri-axial magnetism data helped behaviour
detection in goats, particularly for the minority classes [11].
Therefore, future research should examine the use of inte-
grated sensors, such as 6-axis sensors that incorporate more
forms of data.

The validation test of the 4-Class + Steps on Muresk Stub-
ble showed a drop in performance in Muresk Stubble, when
compared to Muresk Dry Pasture. This is presenting as a con-
fusion between the grazing and walking behaviours. Looking
at the distribution of the classes, Muresk Dry Pasture has less
overlap of grazing and ruminating behaviours with the walking
behaviour, with Muresk Dry Pasture overlapping in just 5% of
cases, and Muresk Stubble overlapping in 19% of cases
(Table 1). This shows that the overlapping of the classes does
present a challenge in terms of accurately identifying the
behaviours, and that further research needs to be performed
to optimise the process of detecting walking. In addition to
adding additional data sources, there may be benefits to split-
ting the classification process into two, one for determining
the Feeding behaviours (ruminating and grazing), and one for
determining the movement behaviours. As there is the poten-
tial overlap for these behaviours, producing separate results
may give a better indication of the sheep’s health, or physio-
logical state. The movement behaviours could be broken
down into an activity/inactivity classification, depending on
the purpose [3]. Additionally, this study used a fixed window
size of 10 s. Using a smaller time window (5 s) [2], a mix of
time window sizes [9], or a sliding window [5] may result in
better classification of walking behaviour.

Comparing the DL methods, BLSTM and LSTM showed
similar results, with LSTM providing generally better overall
performance, and BLSTM being slightly ahead of LSTM for
the minority class classification. However, given the compu-
tation costs involved with BLSTM, LSTM is likely the better
candidate. Given the slight improvement in BLSTM for the 9
class tests, it may prove the better option where there is a
small differentiation between the class feature spaces. The
forward and reverse traversal of the data may prove more
beneficial in this case in detecting the smaller differences.

4.2.  Data synthesis

Examining the results in the context of the SMOTE data aug-
mentation, the addition of synthetic data generally helped
improve the performance for the DL methods. However, for
RF and SVM, the addition of the synthetic data resulted in

either a reduction in accuracy or a very small improvement.
This was demonstrated in the 9-Class test for Sheep #9. With
the limited data in the single sheep data set and a highly
dominant majority class, the additional synthetic data leads
to greater confusion with the majority class, reducing the
overall success of the classification. With Sheep #9, the major-
ity class (sitting) is so dominant (57.6% of samples), the influ-
ence on the weighted average by a reduction on the recall for
that class, results in an overall performance loss. With the
addition of the SMOTE data, the model learns from more
examples of the minority cases which led to confusion over
similar samples to the majority class. This results in a drop
in the majority class recall, which, because of the dominant
position of the majority class results in a quick degradation
of the weighted average recall.

Therefore, the level of class imbalance needs to be consid-
ered before applying the synthetic data. Further study needs
to be performed to see if a reduction of the synthetic data,
with the aim of maintaining some, but not extreme, imbal-
ance, improves performance over balancing out the entire
data set to equal proportions.

5. Conclusion and future work

In this study, we performed a study of DL based sheep
behaviour analysis on accelerometer data collected under
grazing conditions. In particular, we considered the chal-
lenges of class imbalance in the data set. Additionally, this
is a first study of classification where multiple behaviours
are present in the observation time window, represented
as compound behaviours. Previous works have examined
other machine learning methods, but have not explored
DL. For comparative purposes we also used two alternative
machine learning techniques. Altogether, four classification
techniques, LSTM, BLSTM, SVM and RF, were analysed in
this study. The comparison was made by adjusting the data
set with synthetic data generated using polynom-fit-SMOTE
and performing classification training with the augmented
data set. These tests were performed on four behaviour
sets, a three class test, a four class test, a four class test
with additional steps data, and a nine class test. The tests
were carried out on individual sheep, as well as the full
nine sheep study.

The use of synthetic data showed benefits for the DL
methods. For RF, benefits were seen for the minority classes,
but reduced performance in classifying strongly dominant
majority classes. For the three and four class tests, the DL
methods were the best performers, regardless of data set size,
with the addition of the step data making noticeable improve-
ments to the walking classification. From the improvement
with step data, we can infer that the models will benefit from
diverse sensor data sources. For the nine class test, RF was the
best performing classifier, but this was largely due to its suc-
cess in classifying the majority classes. The DL methods, with
more data, showed comparable performance to RF, and
showed better performance when classifying the minority
classes. Generalisability tests, i.e., train on one set of sheep
and test on a different set, demonstrated the DL techniques
can generalise effectively.
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5.1. Future work

Further research is required explore the possibilities of utilis-
ing a combination of the DL and RF classification techniques
to provide a more accurate prediction on imbalanced sheep
behaviour data. Further study is also required to correctly pre-
dict walking behaviour, adding alternative data sources, sim-
plifying the categories, or separating the feeding and
movement behaviours into separate models. Additionally,
examining effects of modifying the time window size for
detecting walking behaviour should be undertaken.

Finally, the average inference times suggest that real-time
classification should be possible. However, future research is
required to validate this conclusion, particularly on a micro-
controller. The CNN-LSTM used in this study cannot currently
be deployed on TensorFlow Lite for Microcontrollers as it does
not support all required operations for the LSTM layers.
Therefore, future research will need to look at alternative
implementations of LSTM that can be deployed in such an
environment.
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Abstract

Newborn lamb mortality is a major concern for the sheapmeat industry, that can potentially be reduced
through detecting and monitoring lambing, which can be cost-effectively performed by analysing accelerom-
eter data. This study investigated the use of artificial intelligence deep learning techniques to identify the
behaviour characteristics of labour and post-partum licking using halter-mounted accelerometer sensors. One
hundred and one lambing ewes across two trials, and 29 ewes across three trials, were fitted with the sen-
sors. Ground truth behaviour labels were obtained based on video recordings (5s long) of the study sheep.
Classification using a Long Short Term Memory (LSTM) model, was performed for different ethograms:
labour behaviours, phases of labour, licking only, and labour and licking in the context of broader grazing
behaviours were performed. The model was fine-tuned with data of six sheep where the first birth time fell
within the observation period. A combined grazing and lambing behaviour ethogram achieved the best per-
formance (accuracy: 81%) with recall of 0.85 for the licking behaviour. Fine-tuning increased performance
further (average accuracy: 86.3%), with a best case recall of 0.88 for labour and 0.94 for licking. The licking
only ethogram demonstrated strong recall for licking (0.90) when the epoch length was increased to 60s.
Isolation of the labour and licking behaviours achieved 84.8% accuracy, with a weighted F1-score of 0.85,
demonstrating the ability to separate the labour phases. The study presents a strong foundation for the
development of systems to detect lambing events, and prolonged labour.

Keywords: On-animal sensors; Parturition; Machine-learning; Sheep; Behaviour classification
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1 Introduction

The classification of sheep behaviour has the potential to inform farmers and researchers about the health
and welfare of the sheep in real time, and support grazing management practices (Alvarenga et al., [2016};
Frost et al., [1997). With the increasing value of sheep stock (Australian Bureau of Agricultural Resource
Economics and Sciences, [2022; OECD Food and Agriculture Organization of the United Nations, [2020)),
and government mandates for sheep tagging (Department of Jobs, 2022} Department of Primary Industries
and Regional Development, [2022)), interest and investment in the field is growing. While challenges exist
in terms of the large area and the number of livestock involved, recent advances in technology have made
the classification of sheep behaviour, and applications of those classifications, a more feasible option. The
miniaturisation of accelerometer technologies has resulted in low cost and power-efficient sensor devices that

can align with common farming practices, such as the wearing of ear tags (Barwick et al., 2018)).

Accelerometers simultaneously measure gravitational and inertial acceleration due to movement across
three axes, representing three dimensional movement (Brown et al.,|2013). Machine learning (ML) methods
can be applied to the data generated by accelerometers to perform classification of the sheep behaviours.
Accelerometers are commonly used in human activity recognition (HAR) where there is a large corpus of
research. The principles behind accelerometer use in HAR can be generally applied to sheep behaviour

classification. However, the models developed for HAR cannot be directly applied to sheep.

The first hours of a lamb’s life are critical to their survival (Nowak, |1996)), with the primary period of
lamb deaths falling within the first few days of after birth. Causes of early lamb mortality include dystocia,
starvation/mismothering, exposure and predation (Hinch & Brien, |2014)). Lamb mortality is not only an
issue of animal welfare, but also has a financial cost to the sheep industry. For example, dystocia has cost
the Australian sheep industry an estimated 780 million Australian dollars per annum (Bruce et al., 2021)).
Therefore, monitoring of ewe behaviour to determine the start and duration of labour, and the time of birth,

is beneficial to the industry.

Ewes show a detectable increase in restlessness around the time of parturition with changes to activity
level and posture being measurable by accelerometer data (Fogarty et al., 2020). However, this requires an
accurate, and generalisable model for predicting the behaviours. This has been the investigation of a number

of studies. Gurule et al. (2021) found that direct sensor metrics provided a better indication of lambing,
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than predicting the behaviour from the signals with Random Forest (RF) with sensors attached to ear tags.
However, accuracy for predicted behaviours associated with labour and post-labour, were low. Smith et al.
(2020) examined changes in the ewe’s activity levels across time, and compared the parturition period to a
baseline activity level in order to predict the time of birth. The differences between the baseline and the
parturition period were statistically analysed with a best result returning a mean error of more than 5 hours.
Dobos et al. (2014]) examined the use of global navigation satellite system (GNSS) technology to determine
if the ewe’s speed, and distance from other ewes were an indicator of parturition. Their findings indicated
there was a possibility of determining the day of lambing, but could not be narrowed to a more specific
time. However, Fogarty et al. (2021)) successfully combined GNSS sensors with accelerometer data to predict
lambing events, combining distance from other ewes, with activity. This provided an accuracy of £ 3h, but
only when early false positives were excluded. Additionally, this may have some deployment issues as it was

not a real time model, requiring an hour of data to perform the predictions.

Observations of ewe behaviour after birth show that the ewes, attracted to birth fluids, begin licking
their young within the first 3 minutes after birth, and continue to spend a large majority of their time licking
them for the first hour (Bareham, |1976; Nowak & Poindron, |2006). Where detection of other activities in
labour, and the sample size of the actual birth is small, detecting when the ewe begins licking their new born
is a good indicator of the birth event, accurate within a few minutes. Sohi et al. (2022) performed behaviour
classification using support vector machines (SVM) of licking and grazing behaviours. This model was then
evaluated with deep learning (DL) techniques to predict the time of birth with the inference results showing
that prediction of parturition can be performed in advanced. The SVM classification results showed the
weakest results for the licking behaviour, but the predictive nature means that it can work as a guide for
lambing time. However, to enable intervention in the case of long labour, such as seen with dystocia, being
able to actively monitor and report the start of labour and the time of birth is important to assist in the

development of real-time monitoring systems.

The objective of this current study was to explore the potential for real-time monitoring of lambing
events using DL analysis of accelerometer data, with a focus on detecting labour and licking behaviours.
Successful detection of these behaviours aids in the determination of long labour, and the time of birth of the
lamb. Consequently, the combination of data, the proposed DL model, and the application of fine-tuning to

individual sheep, is our novel contribution to the task of determining the onset of labour and time of birth.
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2 Materials and Methods

2.1 Animals and Research Site

All procedures described were performed according to the guidelines of the Australian Code of Practice
for the Use of Animals for Scientific Purposes 2013 and received approval from the Murdoch University
Animal Ethics Committee (R3039/18). Five data sets were used for this experiment, two lambing behaviours

and three grazing behaviours data sets:

(i) Lambing Density collected from 55 lambing Merino ewes in 2016,
(ii) Muresk Lambing collected from 54 lambing Merino ewes in 2020,

)

)
(iii) Muresk Dry Pasture collected from 9 Merino ewes in 2018,
(iv) Muresk Stubble collected from 10 Merino ewes in 2018, and
)

(v) Murdoch Green Pasture collected from 10 Merino ewes in 2018.

Data set collection (fil) was completed at the University of Western Australia Research Farm near Pingelly,
Western Australia (32°28'34.7"S, 116°58'57.6”E). Data sets collections , , and were completed
at the Muresk Institute Farm, near Northam in Western Australia (31°44'59”S, 116°40'13”E). Data set
was completed at the Murdoch University Farm in Perth (32°4'1.1”S, 115°50'15.3"E).

For each trial different sensor configurations were established. However, for all trials an Actigraph,
halter mounted sensor (Actigraph, Pensacola, Florida, USA) was fitted to on the right side of the jaw. Each

of the ewes was also branded on both flanks with a unique number to enable the ewes to be identified in the

video recordings (Fig. 1f).

2.2 Data Set Description

The lambing behaviour data sets were collected as follows. Actigraph sensors recorded tri-axial ac-
celerometer data, sampled at 30 Hz. The sensors ran for twelve days, while observations were made during
daylight hours through video recordings on the day of lambing. Some observations began after labour had
commenced, or lambs were born. The ewes gave birth to one, two or three offspring. A subset of the videos
were subdivided into five second blocks, and observations were made to allocate behaviours to the activities

in the five second blocks, related to labour and birth. The activities recorded were: walking not grazing,
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(a) pregnant sheep (b) ewe and lamb

Fig. 1. Sheep from the 2016 experiment, showing the halter mounted accelerometer, and the painted identification numbers.
(a) A pregant sheep before the time of lambing (b) ewe and lamb after birth.

grazing head down, lying idle, standing no pushing, agitated, pawing ground, pushing standing, pushing lying,
bending neck back skyward, bending neck back lateral, lamb born, licking after birth. These observations were
chosen as key indicators of labour and birth in combination with typical grazing behaviours. The distribution
of the activities is shown in [Table 1] Where the activities were not clear from the video footage, the samples
were excluded from the data set. The sheep could undertake multiple activities within the five second block,

such as walking not grazing and pushing standing.

The grazing behaviour data sets were collected and prepared as per Turner et al. . Actigraph
sensors recorded tri-axial accelerometer data, sampled at 30 Hz. After a 3-day adaption period, the sensors
ran for four days while observations were made during daylight hours through video recordings. A subset
of the videos were subdivided into ten second blocks, and observations were made to allocate behaviours to

the activities. The behaviours recorded were sitting, standing, walking, grazing and ruminating.

2.3 Data Preparation

The raw data was provided as a series of comma separated values (CSV) files. Each row contained a

sheep identifier, timestamp, the observed behaviours and the accelerometer data for the time window.

Eight experiments were constructed from the observed behaviours:

i) lambing behaviours: labels were assigned to the observations by priority order where labels overlapped

(lamb born, pawing ground, agitated, bending neck back lateral, bending neck back skyward, pushing
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Table 1
Total number of observations for each activity. Multiple behaviours were recorded for each sheep within the 5 second window,
resulting in a total of 12896 samples for the 2016 experiment, and 22496 for 2020.

ii)

iii)

iv)

vi)

Behaviour Key 2016 2020 Total
agitated agitated 340 305 645
bending neck back skyward neck_sky 466 885 1351
bending neck back lateral neck_lat 237 408 645
grazing head down grazing 2280 1542 3822
lamb born birth 95 59 114
licking after birth licking 5963 4034 9997
lying idle lying 1238 2229 3467
pawing ground pawing 149 286 435
pushing lying push_lie 1241 2295 3536
pushing standing push_stand 322 994 1316
standing no push standing 9452 8406 17858
walking not grazing walk 2319 3028 5347

standing, pushing lying, licking after birth, lying idle, grazing head down, walking not grazing, standing
no push) selecting for the smallest sample sizes first, and promoting licking as a label of interest.
labour phases: to determine how well the labour specific behaviours could be detected, the behaviours
were grouped by the phase of labour - pre-labour (agitated, pawing ground), labour (pushing standing,
pushing lying, bending neck back skyward, bending neck back lateral, lamb born), and post-labour (licking
after birth), and other (walking not grazing, grazing head down, lying idle, standing no pushing). Where
behaviours overlapped in the same epoch, priority order (pre-labour, labour, post-labour, other) was
employed to determine the label, promoting the labour behaviours and selecting the smaller sample sizes
first.

labour/licking: the confusion found with the labour phases experiment lead to combining the pre-labour
and labour classes, to produce a two class experiment consisting of labour and post-labour.
licking/other: to evaluate detection of licking to estimate the time of birth, the data set was split into
two groups with any observation involving licking after birth being marked as licking, and otherwise
other.

combined grazing and lambing behaviours: a data set was created drawing samples from both grazing
and lambing behaviours data sets. The data set consisted of the following classes: ruminating, idle
(standing and lying behaviours), walking, grazing, labour, licking. Where samples overlapped the lambing
behaviours were prioritised

sheep specific grazing and lambing behaviours: for fine-tuning, six separate tests were created for six ewes

from the 2016 lambing behaviours data set where the time of first lamb born was within the observation
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period. For each test, a single sheep from the grazing behaviour data set, and the selected ewe was
removed from the data for the combined grazing and lambing behaviours experiment. The excluded
grazing behaviour sheep and lambing behaviour ewe were combined to produce the fine-tuning set.

vii) isolated labour phases: to evaluate prolonged birth time monitoring capabilities, the other class of the
labour phases test was removed.

viii) 4solated labour/licking: to evaluate prolonged birth time monitoring capabilities, the other class of the

labour/licking test was removed.

The 5s epoch length in the lambing data sets were extend to 10s to match the grazing behaviour data sets
by combining the observations, and concatenating the sensor data where the timestamps were continuous.
To evaluate the effect of the epoch length on the licking experiment in promoting the recall of the licking
behaviour, different epoch lengths were created by combining the observation epochs together, where the
timestamps were continuous, to create longer epochs. The epochs created were 5, 10, 20, 30, and 60 seconds

long.

The prepared data were split into 5-fold cross-validation sets, ensuring all samples had an opportunity
to be excluded from the training set. The data sets were augmented with SMOTE (Chawla et al., [2002)

synthetic data using the polynom-fit-SMOTE implementation (Kovécs, [2019).

2.4 Classification

Long Short Term Memory (LSTM) is a DL model with memory capabilities, apt for classification task
of multi-variate time series data (Hochreiter & Schmidhuber, [1997)). Accelerometer data is sequential and by
employing the memory capabilities, the sequential nature, and important identifying information is retained
(Ramasamy Ramamurthy & Roy, 2018). Previous research has shown the advantages of LSTM for detecting
sheep grazing behaviours (Turner et al., [2022), particularly with minority classes. Therefore, this network

and configuration, has been applied to the lambing behaviours in this study.

A combination of a CNN and LSTM was implemented using PyTorch in Python. The individual axes
of the accelerometer data were concatenated into a 1D array 900 elements long. The array was input into
two 1D convolution layers, with a kernel size of 6, a filter size of 128, and using ReLu activation. The output
of the convolutions was then passed through a dropout layer to prevent over-fitting. Next, to reduce the

complexity, the data was passed through a maxpool layer with a pool size of 2. Finally, the feature selection
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was performed by passing the output to a maxpool layer through a dense layer, selecting 115 features. The
output of the feature selection was then fed into an LSTM layer to perform the classification. The results of

the LSTM layer were then passed to a dense layer to select for the number of classes in the training set.

2.5 Fine-Tuning

For the fine-tuning tests the LSTM model was trained on the combined grazing and lambing behaviour
data set with the individual sheep excluded, using 5-fold cross-validation sets. The best performing fold was
then used to perform the fine-tuning. A warm-up training was performed with the model, freezing all but
the final linear layer, on the data set consisting of only the individual sheep’s data. The layers were then

unlocked and a final fine-tuning for 20 epochs was performed with the individual sheep data (Fig. 2)).

Input Input
ConvlD ConvlD
L] Y
ConvlD ConvlD
- L Y
E —:\h | Dropout P Dropout
=F 2 2
g 8 < L E3 Y
N _” Y = |
== MaxPool 32 MaxPool
o+ N L:
Dense - Dense
L] Y
LSTM LSTM
b e 7 y v
E g Dense Dense
= v v
Output Output

Fig. 2. The freezing of the layers for the fine-tuning process. Left: During warm-up all but the final dense layer are frozen
and only the final dense layer performs training. Right: After warm-up the early layers are unfrozen and all layers are trained
for fine-tuning.

2.6 Birth Inference Tests

The trained models were evaluated for detecting the behaviours in the raw unlabelled data sets, and

compared against the times that births were recorded. Only a subset of the sheep (six sheep from the 2016
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data set) were used as they had their first lambs born after the start of the observation period, and the
unlabelled data was available. The remaining sheep within the 2016 data set had already had their first
lamb before the observation period and therefore the exact time of the birth, and subsequent licking of the

newborn lamb, could not be accurately determined.

The tests were performed by dividing the raw data into the required epoch length, and performing
inferences with trained model, and converting the logits using softmax rank the predictions between 0 and

1. The inferred values were then analysed, comparing to the time of birth and the observed behaviours.

The inference data was further processed to aggregate the number of licking predictions per hour. These
aggregates were then visualised for each hour during the 12 days of the trial to show the total number of

licking predictions per hour.

2.7 Evaluation Metrics

The ground truth and predicted values were mapped using a confusion matrix, to determine the True
Positive (TP), True Negative (TN), False Positive (FP) and False Negative (FN) results of the classification.

From these values the following were calculated:

TP +TN

A - 1 1
ceuracy = rp TNy PP FN < 0% (1)

TP

Precision = ——— 2

recision = s (2)
TP

Recall = 757N 3)

Precision x Recall
F1-S =2 4
core " Precision + Recall @

Accuracy , the percentage of samples correctly classified, gives an overall performance indication
of the classification. Precision measures what fraction of predictions that gave a positive class, were
actually positive. Recall (also referred to as sensitivity) indicates what fraction, of all positive samples,
were correctly predicted as positive by the classifier. F1-Score combines the precision and recall into one

value for comparison, in the form of the harmonic mean.
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2.8 Test Environment

All tests were performed on an Intel(R) Core(TM) i7-4820K CPU with 32GB RAM, with an NVIDIA

GeForce RTX 3060 with 12GB RAM, running Linux kernel version 5.10.109.

3 Results

3.1 Lambing Behaviours

The lambing behaviours test was undertaken to evaluate the performance of the individual observations.
The classification resulted in an overall accuracy of 45.4% and a weighted F1-score of 0.43 . Detec-
tion of the birth behaviour only achieved a recall of 0.01. In contrast licking had a recall of 0.78. Confusion
was evident between the behaviours that involved lying down, pushing lying and lying idle, and more gen-
erally with the inactivity behaviours. Licking demonstrated the best recall, but there was greater confusion
between the licking, standing and grazing behaviours, favouring licking which had the greater number of
samples (Fig. 3).

Table 2
Classification results for the different experiments, augmented with SMOTE synthetic data to balance the classes.

Experiment Accuracy(%) Weighted F1-Score Support
Lambing Behaviours (Sec. (3.1) 45.4 0.43 12680
Labour Phases (Sec. ) 62.4 0.62 16697
Labour/Licking (Sec. 64.1 0.64 16697
Licking/Other (Sec. [3.3) 78.1 0.78 16697
Grazing and Lambing (Sec. 80.9 0.81 94990

3.2 Labour Phases

As the lambing behaviours test contained many classes with a small sample size, hindering performance,
the classification test was changed to work with the phases of labour, splitting the classes into pre-labour,
labour, licking. This improved the result from the lambing behaviours test (45.4% to 62.4%; . The
confusion matrix shows the difficulty lies between distinguishing the pre-labour and labour behaviours, but

demonstrates a better distinction with the licking detection (Fig. 4h).
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Fig. 3. Normalised confusion matrix for all the lambing behaviours, showing a high level of confusion for all classes except the
licking. All data sets were augmented with SMOTE data.
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Fig. 4. Normalised confusion matrix for (a) the phases of labour, and (b) the reduced classes of labour and licking. All data
sets were augmented with SMOTE data.
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There is a large overlap between the pre-labour and labour behaviours, as the pawing ground and agitated
behaviours can also be an indicator of the stresses of labour. Therefore, the pre-labour and labour classes
were condensed into one class. This resulted in an improvement in the classification task to 64.1% accuracy

(Table 2)) and increasing the labour results (Fig. 4p).

3.3 Licking Detection

Building upon the clearer distinction made for the licking behaviour in the labour phases test, a further
reduction of the classes was made to only licking. The classification results for detecting licking versus other
behaviours demonstrated an improvement in performance (78.1% versus 64.1%, [Table 2|). Detecting licking
was weaker than other with a higher proportion of the licking being detected as other (Fig. 5]). Working
with the data set imbalance that favoured the licking behaviour in the 2016 data set, the precision and recall
of the licking behaviour could be prioritised, reaching a precision of 0.84, and a recall of 0.90 by working
with a longer epoch of 60s (Table 3)). This came at the expense of the other behaviour classification resulting
in an overall loss in Fl-score from 0.74 to 0.70. The poorer performance in the precision results was visibly
demonstrated when performing the inference test against the 12 days of unlabelled data with the 60s epoch.
The 3 days overview shows a concentration of licking prediction near the birth times. However, the licking

behaviour is predicted throughout the tests, rather than peaking after the point of birth (Fig. 6).

-0.5

True label

0.4

0.3

-0.2

licking other
Prediction label

Fig. 5. Normalised confusion matrix for all licking versus other for 10s epoch. All data sets were augmented with SMOTE
data.
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Table 3

Binary classification results for detecting licking behaviour from other behaviour with a variable epoch length. The increased
performance in terms of precision and recall for the licking behaviour can be seen as the epoch length increases, however the
results of the other behaviour do not maintain the same increase.

Model Epoch(s) Precision Recall F1-Score Accuracy Other F1-Score Support
LSTM (2016) 5 0.69 0.75 0.72 72.8 0.74 12896
LSTM (2016) 10 0.75 0.82 0.78 75.7 0.73 6232
LSTM (2016) 20 0.79 0.88 0.83 79.0 0.72 2931
LSTM (2016) 30 0.82 0.88 0.85 79.7 0.70 1969
LSTM (2016) 60 0.84 0.90 0.87 81.8 0.70 895
10 10 ’
] o { N .
S 08 S08{ o o g “, o
o T° . . ° q
S 06 Soel. o °
s s
% 0.4 4 % 0.4
g g
o o
ﬁ 0.2 ﬁ 0.2 _
O ] licking
e other
0.0 0.0 . .
hv2 RE]
Hour

(a) 3 day

(b) birth hour

Fig. 6. Inference results for Sheep 204 with the LSTM 2016 data set with 60s epoch length. (a) shows the 3 days of birthing,
(b) the hour either side of the time of birth. The red line indicates the times of the birth of the lambs, and the predictions
made for each 60s epoch of the unlabelled data. (Figure best viewed in colour.)
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3.4 Combined Grazing and Lambing Behaviours

Inference results from the licking/ other test showed that the confusion with the other behaviours resulted
in predicting the licking behaviour too often. The recorded data covered a large proportion of time outside of
labour. Therefore, being able to detect the labour and the post-labour licking would be useful in the context
of the normal grazing behaviours, to detect the onset of labour and the time of birth. A data set was created
to combine the grazing behaviours and the lambing behaviours in order to test labour and licking behaviours
as distinct from the grazing behaviours. These results show the an overall improvement in the classification
result, increasing to 80.9% accuracy but a drop in macro Fl-score to 0.72 (Table 2). The results generally
followed the proportion of samples in the data set, with the highest F1-score for grazing and idle. However,
licking did not follow the general trend, demonstrating the second best recall (0.85) [Table 4). Examining
the confusion matrix, walking was the weakest, being confused with other grazing behaviours. Labour also
showed a high level of confusion with licking but also with the idle behaviour. However, licking performance
was improved, demonstrating the greatest confusion with grazing and labour )

Table 4
The classification results for the combined grazing and lambing behaviours, augmented with SMOTE synthetic data.

Class Precision Recall F1-Score Support
ruminating 0.74 0.81 0.77 13662
grazing 0.88 0.86 0.87 30504
walking 0.61 0.47 0.53 6520
idle 0.85 0.84 0.85 35921
labour 0.56 0.56 0.56 3276
licking 0.69 0.85 0.76 5107
macro average 0.72 0.73 0.72 94990
weighted average 0.81 0.81 0.81 94990

Performing the inference tests with the unlabelled data continued to show the labour and licking be-
haviours being predicted with a greater concentration after the birth. However, as with the licking/other

tests, a large amount of false positives were predicted outside of the birthing window (Fig. 7).

3.5 Fine-tuning

Performing fine-tuning of the combined grazing and lambing behaviour on a single sheep data set
resulted in further improvements in the performance of the model, increasing the accuracy from 80.9% to

a range of 84.0% to 87.6% depending upon the sheep (Table 5). With the strongest of these results, Sheep
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Fig. 7. Inference results for Sheep 140 with the combined grazing and labour behaviours. (a) shows the 3 days of birthing, (b)
the hour either side of the time of birth. The red line indicates the times of birth of the lambs. (Figure best viewed in colour.)

140, class performance was generally improved with labour showing the greatest improvement in recall (0.56
to 0.93). However, licking and ruminating decreased in performance . Comparing the confusion
matrices against the combined data set, generally improvements were seen, across the classes with individual
exceptions that varied by sheep. Labour found the greatest advantage in the fine-tuning process, often at
the expense of the licking performance. However, for Sheep 146, the training resulted in improvements for

both labour and licking (Fig. 8).

Table 5

The classification results for the combined grazing and lambing behaviour data set, augmented with SMOTE synthetic data,
fine-tuned on the samples of an individual sheep from each data set. Precision, recall and F1-Score are the macro average
values.

Sheep Accuracy Precision Recall F1-Score Support

3 86.9 0.71 0.78 0.71 3491
140 87.6 0.76 0.81 0.78 3483
146 86.7 0.71 0.81 0.74 3443
170 86.5 0.75 0.82 0.77 3595
193 86.2 0.75 0.78 0.75 3660
204 84.0 0.69 0.73 0.84 3700

A bias towards the lambing behaviours was visible in the inference tests with a labour being the pre-
dominant prediction. There is a concentration of licking behaviours around the time of birth, but licking
continues to be predicted throughout the time period . Looking at the aggregation of the licking
behaviour per hour across the study period, peaks were identifiable around the time of birth for individual

sheep (e.g., Sheep 193 and 204). However, this was not universal with others, such as Sheep 170, showing
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Table 6
The classification results fine-tuned for Sheep 140 on the combined grazing and lambing behaviours augmented with SMOTE

synthetic data.

Class Precision Recall F1-Score Support
ruminating 0.73 0.78 0.75 321
grazing 0.92 0.89 0.91 968
walking 0.69 0.54 0.60 220
idle 0.91 0.93 0.92 1883
labour 0.68 0.93 0.79 30
licking 0.64 0.80 0.71 61
macro average 0.76 0.81 0.78 3483
weighted average 0.88 0.88 0.88 3483
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Fig. 8. Normalised confusion matrix for the combined grazing and lambing behaviours, augmented with SMOTE data, fine-
tuned on an individual sheep (b-d), with the baseline data set containing all sheep (a).
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Fig. 9. Inference results for Sheep 140 ((a) and (b)) and Sheep 204 ((c) and (d)) with the combined grazing and labour
behaviours after fine-tuning on the single sheep. (a) and (c) shows the 3 days of birthing, (b) and (d) the hour either side of
the time of birth. The red line indicates the time(s) of birth of the lamb(s). (Figure best viewed in colour.)

3.6 Labour and Licking Distinction

An examination of the distinction between the labour and licking behaviours was performed, removing
the other classes. The individual birth phases resulted in an accuracy of 80.1%, but pre-labour continued
to be difficult resulting in a macro Fl-score of 0.62. However, combining the pre-labour and labour phases
resulted in an increase of accuracy to 84.8%, and macro Fl-score of 0.84. The combination resulted in a
slight drop in the performance of the licking behaviour, with some of the confusion between the pre-labour

and licking behaviour evident in the separated classes being carried over to the licking behaviour.
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Fig. 10. Aggregate licking predictions per hour for the 12 days of the study for three sample ewes. The red line indicates the
time of the birth for the lamb. (Figure best viewed in colour.)
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SMOTE data.

4 Discussion

4.1 Lambing Behaviours

The primary aim of this research was to determine if the phases of labour can be determined through the
analysis of accelerometer data, with a particular focus on being able to detect the time of birth of the lamb.
The lamb being born was one of the observations. However, there are too few events to successfully train
a model to identify it, only successfully identifying one of 96 samples in the data. Examining the different
captured behaviours shows that the LSTM model was successful at identifying licking behaviour. However,
the overall performance was poor. This could be due to a number of factors. Firstly, there are a number of
behaviours which are common attribute, e.g., lying idle and pushing lying, or standing and pushing standing.
While class imbalance plays a role, the confusion between these classes demonstrate that the position of
the sensor on the halter is not sensitive to the differences. Additionally, a number of the classes showed
confusion with the licking behaviour. The standing behaviour showed a high level of confusion, particularly
with licking and lying. Despite the accelerometer being attached next the to jaw, the standing and licking
behaviours would demonstrate similar patterns in terms of a lack of vertical movements, but is not as
clearly distinguishing between jaw movements for licking that is occurring. This is consistent with previous
work which demonstrated a similar difficulty distinguishing the standing behaviour (Turner et al., .

Standing is a lack of activity and therefore any movement or variation in this case will be biased towards
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other behaviours. Licking had the largest sample size. However, it also marks the time after birth where the
agitation of labour is over, and the focus is on the lamb. This will give stability to the sensor signals, as there
are less variation in behaviours during this time, although the influence of subsequent births has not been
investigated. An increase in the rate of change between standing and lying on the day of labour has been
demonstrated by Fogarty et al. (2020), suggesting that the agitation during labour results in this greater
variance of behaviours. Therefore, it is likely that there is a higher variance in behaviours during labour,

with a greater overlap in each epoch, weakening the distinction between the individual labour behaviours.

Given the smaller sample size for some actions such as agitated and the bending neck back behaviours,
these were rolled into groups to try and determine the different phases of labour, looking at pre-labour,
labour and licking activities. This showed some improvement to the overall accuracy of the classification,
and were further improved when condensing to just labour and licking. This reflects the easing of the
classification problem by requiring a smaller number of classes. The performance of the pre-labour and
labour behaviours, was reduced, again reflecting the sample numbers. However, the grouping of behaviours
into the different phases is combining a larger diversity of actions for the labour behaviours, particularly
when compared to licking which is just the one behaviour. Therefore, this will weaken the selection for
the labour behaviours because of the diversity of samples. This may present a problem better solved by
anomaly detection techniques, identifying the outliers in the normal behaviours, rather than trying to detect

individual behaviours.

Once the labour period can be successfully identified, the results show the possibility to separate the
labour and licking behaviours in isolation . A general time-frame for the period of lambing is known
by the farmer because management practices control the time for conception. Therefore, this results shows
monitoring of the progression of labour is possible, in order to assist in the detection of dyscotia, or other

complications, and allow intervention by the farmer.

4.2 Licking Detection

The labour phase tests shows a clear distinction of the licking behaviour. The ewe will begin licking
within the first few minutes after birth and continue for the first twenty-four hour period (Bareham, |1976}
Nowak & Poindron, [2006). Therefore, successful detection of the licking behaviour could give a good indi-
cation of the time of birth to within a few minutes. Simplifying the model to two behaviours resulted in

an overall performance improvement, with the model demonstrating a high level of recall (0.90). However,
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the precision was not as strong and this was reflected in the inference evaluation against the unlabelled data
with a high proportion of licking being predicted outside of the birth window. The evaluation of all the
classes demonstrated a large level of confusion between the standing and the licking behaviours. A sheep
typically spends 34% of the time standing idle (Fogarty et al., , but as visible with results for the in-
dividual behaviours, small variations in the signal lead to predictions where the standing behaviour is being
detected as another behaviour, in this case licking. Additional sensor data, such as the use of gyroscopes
and barometric pressure sensors could aid the distinction between the two behaviours as the head position
is potentially different for the two behaviours that could be detected with greater accuracy with

the additional sensors.

(a) standing (b) licking

Fig. 12. A sheep from the 2016 experiment observation video, showing the (a) standing and (b) licking behaviours. The
distinction in vertical position of the sensor on the jaw is visible.

Increasing the epoch length improved the recall of the licking behaviour. Within a longer epoch there is
a greater possibility of multiple behaviours being present. However, when licking is the primary behaviour
within the 60s it can give a clearer indication of the behaviour, when performing a binary classification.
The observed licking behaviour was an intensive activity spanning multiple minutes when undertaken after
birth . Therefore, this could provide a clear indicator of the birth time when examining it at a
60s interval. However, the longer epoch length bears more investigation as the overall sample size, and the
method for creating the 60s epoch length, concatenating the 5s epochs, could introduce a bias towards the
licking result. By comparison, (Gurule et al., with a larger set of behaviours did not see the same
level of success, achieving a recall of 0.59 with the 60s epoch. Additionally, consideration of the memory

constraints on an embedded device may limit the application of the longer epoch in deployment scenarios.
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Fig. 13. Accelerometer data samples for 60s epochs. Left: licking samples show a consistent acitivity for the full 60s epoch.
Right: other samples show a larger degree of variability. (Figure best viewed in colour.)
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4.3 Lambing Events in Context

One of the deficiencies of the data set was the observation period primarily covered the birth and post-
birth period. This limits the ability to be able to distinguish labour versus non-labour periods. Future work
could address this by performing a long term study with multiple observation periods to be able to detect
the different periods. This study should take into account the differences in behaviour due to pregnancy.
However, due to this limitation a simulation of the different behaviours was performed by combining the
grazing behaviours and the lambing behaviour data sets. There is a weakness with this approach which
relates to the problems of generalisation for the sheep accelerometer behaviour models. The same model can
predict the source data set of a given sample with a high degree of accuracy (97.7%). Therefore, there may
be an inherent bias in the results where the data comes from only one data set. However, the overall result
is improved by introducing the larger data set as the distinction between the labour and licking behaviours

improves the recall when using the combined data sets (labour: 0.44 to 0.56, licking: 0.66 to 0.85).

4.4 Fine-Tuning

The fine-tuning results show improvements on the classification when trained on the specific sheep.
Generalisation has been a demonstrated issue (Kleanthous et al., |2022) and the results show the benefits
of fine-tuning to an individual sheep. While on-device fine-tuning to the individual is used with fitness
tracking devices like smart watches, the opportunities for feedback are limited with sheep. A training period
could be performed utilising computer vision to validate the recorded behaviours. However, this is not
practical for the labour and licking behaviours as they are a limited events. Therefore, future work should
investigate applying transfer learning techniques to the fine-tuning process. Additionally, this experiment
has not investigated the influence of sensor orientation. Therefore, seasonal variation (due to wool and body
mass variation) or the removal and refitting of the harness need to be evaluated. The industry is only likely
to accept ear tags, which may have advantages in terms of sensor orientation issues (Barwick et al., 2018)).
However, it may not achieve the same level of accuracy as using a halter mounted sensor, particularly for

activities such as ruminating and licking that are mostly distinguished by jaw movement.
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4.5 Birth Detection

The inference testing against the unlabelled data gives some indication that identifying the licking
behaviour could give an estimate of the time of birth. As seen with the results from Sohi et al. (2022), the
overall level of licking within an hour can give a reasonable indication. However, despite having a higher
degree in confidence in identifying the licking behaviour in our tests, the results were not universal for all
sheep. For example, Sheep 170 demonstrated multiple peaks of licking, before and after the birth. The
nature of the combined data sets will be biasing the predictions towards the lambing behaviours during the
inference tests due to the ability of the network to distinguish the data sets. However, the fine-tuning results
do indicate that with a more diverse set of behaviours, from a single source, over a longer period of time,
classification results can be enhanced. Subsequently, the successful detection of the licking behaviour, and

hence the time of birth, are likely to be improved. Therefore, this provides a good baseline for future work.

5 Conclusion

Detection of the lambing event is important to increase the survival of the lambs, and for farm manage-
ment practices. Isolating the licking behaviour from the raw accelerometer data using a LSTM model proves
an effective mechanism for approximating the time of birth, with the prediction of the licking behaviour
achieving a 78.1% accuracy, with a best-case recall of 0.9 for licking. However, a broader range of behaviours
assists in the licking detection, with the integration of lambing and grazing behaviours boosting the overall
accuracy to 80.9%, and achieving a Fl-score of 0.85 for the licking behaviour. Further refinement, through
the use of fine-tuning on individual sheep, aided in achieving an average of 86.3% accuracy, boosting recall

for labour from 0.56 to 0.93 in the best case.

Applying the model for predictions against unlabelled data, showed a weakness in determining the
licking behaviour only in the context of birth, with licking being predicted throughout the 12 day trial.
The concentration of licking behaviours at the time of birth in representative sheep showed the potential for
detecting the lambing event through the detection of licking. However, more work is required to isolate the

labour and lambing period to further enhance the reliability of the method.

Isolation of the labour and licking behaviours demonstrates the possibility to track the progress of

labour through separation of the two behaviours with 84.8% accuracy. With isolation of the labour period,
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the separation of the labour, and licking provides real-time monitoring capabilities to enable intervention by

the farmer in the case of complications with the labour.

This work provides the baseline for future work, investigating the use of deep learning for labour moni-

toring and lambing event prediction.

5.1 Future Work

Further research is required to validate the conclusions of this research by expanding the data acquisition
process to include a greater body of general grazing behaviours. A longitudinal study, looking at the differ-
ences between activities when pregnant and not pregnant would assist in the development of a model that
clearly distinguishes the labour and licking behaviours from other behaviours, such as standing and grazing.
Additionally, the use of multiple sensors, would prove advantageous to address issues of generalisation, and
also provide more data points for separating similar behaviours. For example, 6-axis sensors, or gyroscopes
provide more data points to work with, and sensors to detect device height, such as barometer sensors, could

assist in posture detection to separate similar behaviours such as licking and standing.
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