
 

 

             

 

Final report 
 

 

Phosphorus Map of North Queensland Grazing 

Lands 

 

 
 

Project code:   B.GBP.0063 

Prepared by:   Stephen Leo, Niilo Gobius, Evan Thomas 

    Queensland Department of Environment, Science and Innovation 

Queensland Department of Agriculture and Fisheries 

 

Date published:   2024 

 
 
PUBLISHED BY  
Meat & Livestock Australia Limited  
PO Box 1961 

NORTH SYDNEY NSW 2059  

 

 

Meat & Livestock Australia acknowledges the matching funds provided by the Australian 

Government to support the research and development detailed in this publication. 

This publication is published by Meat & Livestock Australia Limited ABN 39 081 678 364 (MLA). Care is taken to ensure the accuracy of 
the information contained in this publication. However MLA cannot accept responsibility for the accuracy or completeness of the 
information or opinions contained in the publication. You should make your own enquiries before making decisions concerning your 
interests. Reproduction in whole or in part of this publication is prohibited without prior written consent of MLA. 

  



 B.GBP.0063 - Phosphorus Map of North Queensland Grazing Lands 

Page 2 of 27 

 

Abstract 

Livestock productivity in grazing lands is closely tied to the amount of plant available phosphorus (P) 

in the soil. To overcome P deficiency, graziers often resort to P supplementation and fertilisation. 

Soil maps are commonly used to inform P management or guide further sampling. However, soil 

maps of P availability are not available for the northern Queensland grazing regions, which contain a 

significant portion of the state’s grazing land. The aim of this project was to fill that gap and update 

the existing map by producing a revised state-wide digital map of soil P. In this project, soil 

bicarbonate extractable P data was collated and supplemented with additional sampling in the 

northern grazing regions. Spatial covariates were intersected with the available soil P data and 

integrated into a quantile random forest model. The model performed well at predicting soil P with 

up to a 48% improvement in validation metrics compared to the previous soil P map. Final prediction 

maps including uncertainties were generated across Queensland at a 30 m resolution and will be 

available through LongPaddock by December 2024. The maps will provide essential information to 

graziers regarding P management across Queensland to support a more productive red meat 

industry. 
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Executive summary 

Background 

Phosphorus (P) is an essential nutrient required by cattle for almost every vital bodily function. 

Cattle consume the majority of their P intake through their diet of grazed pasture plants, which in 

turn absorb P from the soil. Many Australian soils are known to be inherently low in available P and 

can result in P deficiency in grazing cattle. Without sufficient P, overall cattle health can be 

significantly impacted and overall productivity reduced. Graziers often resort to P supplementation 

to overcome P deficiency and rely on soil maps to inform them of the P status of their lands. A digital 

map of soil P was recently produced to inform on P status but did not extend into the Gulf and Cape 

York regions of Queensland, where a significant portion of the state’s grazing land exists and that are 

known to be P-deficient. The outcomes of this project will fill that gap and update the existing map, 

therefore providing graziers with access to high-resolution soil P information to inform P 

management strategies across all of Queensland. This will result in greater productivity and 

profitability across the red meat industry. 

Objectives 

The overall aim of this project was to update and extend the soil P map into the northern regions of 

Queensland. The specific objectives were to: 

1. review the existing soil P datasets available for the entire extent of Queensland 

2. review current availability of soil P data from the northern regions of Queensland 

3. identify geographical gaps in the data set and collect/analyse new samples 

4. update the previous digital soil mapping methodology with new machine learning models 

and spatial covariates 

5. produce a predicted soil P (0-10 cm) map of Queensland at a 30 m resolution 

6. incorporate the map into extension materials (e.g., upload to the LongPaddock website). 

All objectives were successfully achieved, with the exception of point 6 which is subject to the final 

approval of this report. 

Methodology 

The methods undertaken to complete the soil P map of Queensland involved extracting all available 

soil bicarbonate extractable P data in Queensland from multiple sources. This was supplemented 

with additional soil sampling in under-represented areas in the northern grazing regions. Spatial 

covariates representing soil-forming factors were intersected with the available soil P data and 

integrated into a quantile random forest (QRF) model. The QRF model was trained on 80% of the 

dataset and the remaining 20% was used for validation. 

Results/key findings 

A total of 6796 unique site location samples were identified across Queensland as suitable for 

modelling following data cleaning. Of these, 228 samples were sourced in this project, either 

through soil sampling campaigns or archived data. The QRF model predicted soil P with a 

concordance correlation coefficient of 0.48, which is a 20% improvement compared to the previous 

soil P map. Final prediction maps including uncertainties (5th, 50th and 95th percentiles) were 

generated across Queensland at a 30 m resolution and will be available through LongPaddock and 

QSpatial by December 2024. 
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Benefits to industry 

The soil P map produced will provide general information to graziers regarding soil P status across 

their properties. However, it is important to note that soil mapping in Queensland is not carried out 

with sufficient precision for definitive usage at the paddock scale. The soil P map is indicative and 

should be complemented with site-specific soil tests to obtain accurate soil P levels. This will equip 

graziers with the knowledge necessary to refine P management for P-deficient soils, ultimately 

driving enhanced productivity and profitability in the red meat sector. 

Future research and recommendations 

Several future research directions were identified in this project including (i) the creation of a 

P buffering index map to complement the soil P map, which provides information on the soils 

capacity to adsorb and hold onto P, (ii) extension of the updated mapping methodology into the 

northern regions of Australia, including the Northern Territory and Western Australia which are 

known to be P-deficient, and (iii) areas of high uncertainty where future sampling campaigns could 

be targeted to improve model predictions and reduce uncertainty. 
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1. Background 

Phosphorus (P) is an essential nutrient required by cattle for almost every vital bodily function. 

Phosphorus is required in the development of bones and teeth, energy metabolism (e.g., adenosine 

triphosphate), metabolism of fat, carbohydrates and protein, and cell structure (Dixon et al., 2020). 

The amount of P required by cattle highly depends on the season (wet or dry) and class of stock 

(reproductive status, growth and lactation). Cattle consume the majority of their P intake through 

their diet of grazed pasture plants, which in turn absorbs P from the soil. Many Australian soils are 

known to be inherently low in P due to extensive weathering, particularly in the northern regions 

(McCosker & Winks, 1994). Without sufficient P, a significant reduction in appetite of the animal can 

occur, which limits pasture and protein intake. This can lead to a number of health and welfare 

issues including poor growth, increased breeder mortality rates, reduced fertility and milk 

production, bone breakage, and therefore, significantly impacting productivity and profitability of 

beef enterprises. 

To overcome P deficiency, graziers often develop a P management plan which involves 

supplementing P in the form of loose licks, liquid supplements, blocks or via water medication. The 

supplementation of P via these forms has demonstrated consistent results in improving pasture 

intake, liveweight gain and reproductive performance when cattle are P-deficient (Dixon et al., 2020; 

Schatz et al., 2023; Winks, 1990). One component of the P management plan is to undertake soil 

testing to inform P status. Various laboratory methods have been developed to assess soil P, some of 

which aim to quantify the total P content, while others estimate the plant available P. Total P tests 

measure both the soluble and insoluble P in the soil. Traditional soil surveys use total P to 

understand the nature of the soil (e.g., the degree of weathering), however, this test has limited use 

in indicating plant available P. In Queensland, plant available P is often measured through 

bicarbonate-extractable P (Colwell-P, method 9B2, Rayment & Lyons (2011)) and several traditional 

(polygon) soil maps have been developed (Ahern, 1994; McCosker & Winks, 1994). However, these 

existing maps of plant available P are generally of low resolution, limited extent and are not readily 

updatable with new data. 

High-resolution, large coverage and easily updatable maps can be produced through the process of 

digital soil mapping (McBratney et al., 2003). In digital soil mapping, observed data is combined with 

spatial covariates that represent soil forming factors across the landscape and are integrated into 

statistical models to spatially predict soil attributes. Using digital soil mapping techniques, a soil P 

map (0-10 cm) across most of Queensland was recently published at a 90 m resolution (Zund et al., 

2022). The map covered a large portion of Queensland and demonstrated significant interest by 

graziers. However, the map did not extend into the Gulf and Cape York regions, where a significant 

portion of the state’s grazing lands exist and are known to be P-deficient (McCosker & Winks, 1994). 

A nation-wide map of soil P was also developed across six depths (0-5, 5-15, 15-30, 30-60, 60-100 

and 100-200 cm) as part of the Soil and Landscape Grid of Australia (Zund, 2022). However, the 

topsoil layer (0-5 cm) did not align well with the P categories used to define whether the soil P is 

deficient or adequate as it typically considers the top 10 cm of soil. 

To date, no reliable map of soil P is available for the northern grazing lands of Queensland. 

Therefore, the aim of this study was to produce a map across all of Queensland extending into the 

Gulf and Cape York regions using digital soil mapping techniques. The outcomes of this study will 

provide graziers with access to high-resolution soil P information to inform P management. This will 

result in greater productivity and profitability across the red meat industry. 
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2. Objectives 

The objectives of this project were to: 

1. review the existing soil P datasets available for the extent of Queensland to be mapped in this 
project 

2. review current availability of soil P data from the northern regions of Queensland, 
3. identify geographical gaps in the data set and collect/analyse new samples 
4. update the previous digital soil mapping methodology with new machine learning models and 

spatial covariates 
5. produce a soil P (0-10 cm) map of Queensland at a 30 m resolution 
6. incorporate the map into extension materials (e.g., upload to the LongPaddock website). 
 

All objectives of this project were successfully met, with the exception of objective 6 which is subject 
to the successful review of this final report and map. 

3. Methodology 

3.1   Site P data 

3.1.1 Existing data 

All available soil P data was extracted from the Queensland Soil and Land Information (SALI) 

database. All data extracted was analysed using the bicarbonate extraction method for soil P 

(commonly known as Colwell-P) - lab methods 9B1 or 9B2 as outlined in Rayment & Lyons (2011). 

The majority of soil P data extracted from SALI has been sourced from various land resource 

assessment projects undertaken over several decades, legacy data and more recent sites analysed in 

the previous P map project (Zund et al., 2022). 

Following extraction, the data was cleaned to represent native P concentrations by removing (i) 

samples collected outside of the 0-10 cm layer in the soil profile, (ii) samples with concentrations 

greater than 150 mg kg-1, which likely indicates previous fertilisation, (iii) cultivated or highly 

disturbed sites according to the recorded site description (McDonald et al., 2009, p. 128), and (iv) 

samples with concentrations greater than 7 mg kg-1 if within 75 m of a: 

• plantation forest, 

• modified pasture, 

• cropping area, 

• tree crop, 

• feedlot or intensive animal farm, 

• infrastructure, 

• mine site, 

• water storage system or channel. 

Site exclusion was conducted using data from the most recent land use mapping of Queensland 

(Queensland Department of Environment and Science, 2019). 

In cases where sites had multiple results, samples that were bulked and/or collected most recently 

were kept. If multiple samples still existed, the average per site was calculated. 
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3.1.2 Additional data 

The Conditioned Latin Hypercube Sampling (cLHS) algorithm was used to determine additional 

sampling sites in the Southern Gulf, Northern Gulf and Cape York regions. The cLHS algorithm is 

widely used in digital soil mapping and has been proven to be an efficient soil sampling strategy 

(Yang et al., 2020). Briefly, cLHS is a stratified random sampling method, which samples ancillary 

data based on their multivariate distribution (Minasny & McBratney, 2006). The objective of the 

algorithm is to maximally stratify the distribution when selecting samples in order to best capture 

the variability in the dataset. The ancillary data included in the cLHS algorithm included spatial 

covariates identified with high importance in a preliminary model. This included radiometrics 

(thorium, potassium, uranium), elevation, weathering index, median slope averaged over 300 m and 

range in elevation averaged over 1000 m. 

Prior to running the cLHS algorithm, the ancillary data was filtered using the most recent land use 

mapping of Queensland (Queensland Department of Environment and Science, 2019) to exclude 

areas outside the scope of the project or that are inaccessible, such as wetlands and rivers. The 

dataset was further filtered to remove areas more than 500 m from roads, which are likely to be 

inaccessible or too time-intensive to access. Once filtered, a total of 100 additional sites were 

allocated per region in the Southern Gulf, Northern Gulf and Cape York. The existing sites collected 

within each region were included in the cLHS process to avoid sampling areas already represented in 

the soil P dataset. If the selected sites by the cLHS algorithm were still not accessible, k-means 

clustering was used on the filtered dataset to determine similar areas based on the ancillary data 

within 10 km of the original sampling point (Fig. 1). K-means clustering is a method used to assign 

data into different groups that have relatively similar properties (in this case, ancillary data). The k-

means clustering algorithm works by selecting random centroids in the dataset and then iteratively 

optimises the position of the randomly selected centroids by minimising the sum of squares from 

each point to the centroid (MacQueen, 1967). 
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Figure 1. Example site (red point) determined by the cLHS algorithm and potential other area 
(green polygon) to sample with similar spatial covariate data determined using k-means 
clustering. 

Once a suitable site was located, the sampling process involved bulking 10 samples collected down 

to 10 cm spread over a 20 x 20 m area. A photo was captured at each site and additional information 

such as coordinates, location description, soil type and vegetation community were also recorded 

where possible. 

3.2   Spatial modelling 

3.2.1 Spatial covariates 

Spatial covariate data was downloaded from the Terrestrial Ecosystem Research Network (TERN) 

datastore (Searle et al., 2022). A total of 156 covariates were downloaded from TERN at a 30 m 

resolution, which represent the soil forming factors of climate, organism (vegetation), relief and 

parent material (geology) (McBratney et al., 2003). Further details on the TERN spatial covariates 

used can be found at https://esoil.io/TERNLandscapes/Public/Pages/SLGA/GetData-

COGSDataStore_30m_Covariates.html. An assessment of all the spatial covariates downloaded was 

initially conducted to remove covariates which displayed patterns unlikely to represent native soil P 

variability, such as seasonal Landsat-derived normalised difference vegetation index. In replacement, 

a few additional covariates representing pre-settler vegetation including pre-1750 major vegetation 

groups (Department of Climate Change, Energy, the Environment and Water, 2023a) and subgroups 

(Department of Climate Change, Energy, the Environment and Water, 2023b), and potential above-

ground biomass (Roxburgh et al., 2019) were included. All covariates downloaded were clipped to 

the extent of Queensland and projected in EPSG 4326. The collected soil P data was subsequently 

intersected with the pre-processed spatial covariates to create the modelling dataset used in section 

3.2.2. All processing was conducted in R (R Core Team, 2021). 

https://esoil.io/TERNLandscapes/Public/Pages/SLGA/GetData-COGSDataStore_30m_Covariates.html
https://esoil.io/TERNLandscapes/Public/Pages/SLGA/GetData-COGSDataStore_30m_Covariates.html
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3.2.2 Modelling 

A quantile random forest (QRF) was selected for modelling the spatial variability of soil P. A QRF 

model is a variation of the random forest model that also has the capacity to estimate uncertainty. 

Random forest is an ensemble-learning method that consists of many decision trees (Breiman, 

2001). Each decision tree represents a subset of the training dataset, randomly sampled to create a 

predictive model. The predictive model from each tree is subsequently used to calculate a final 

prediction result for each quantile (in this case, the 5th, 50th and 95th). To optimise the QRF algorithm, 

the number of covariates used at each split (referred to as mtry) was adjusted and the mtry with the 

lowest root mean square error (RMSE) was selected as optimal. The model employed 500 trees and 

underwent a 10 k-fold cross validation. All model fitting was completed using the ‘ranger’ function 

(Wright & Ziegler, 2017) within the ‘caret’ package (Kuhn, 2022) in R. 

Prior to fitting the QRF model, the soil P data was log-transformed as it displayed a strong right-

skewed (positive) distribution (Fig. A1). A variance inflation factor (VIF) analysis was also conducted 

to reduce multicollinearity and the potential of model overfitting due to the high number of spatial 

covariates. This was completed separately for each soil forming factor including climate, parent 

material and relief using a VIF threshold of 10. This excluded 27 of the 41 climate covariates, 2 of the 

18 relief covariates and 1 of the 14 parent material covariates. 

The extracted soil P dataset used in the QRF model was split into a training and testing dataset for 

model evaluation. 80% of the dataset was split using the cLHS algorithm for training the model, 

while the remaining 20% was used for model validation. Model performance was evaluated based 

on the coefficient of determination (R2), bias, RMSE, normalised RMSE (NRMSE) according to the 

difference between the maximum and minimum observed values and Lin’s concordance correlation 

coefficient (CCC) (Lin, 1989). The final prediction maps for the 5th, 50th and 95th percentiles were 

mapped with the best performing model and the uncertainty was calculated as: 

Uncertainty =
95thpercentile − 5thpercentile

Max value (95thpercentile − 5thpercentile)
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4. Results 

4.1   Soil P data  

Following the data cleaning process, a total of 6796 unique site location samples were identified 

across Queensland as suitable for modelling (Fig. 2). Of these, 228 samples were sourced in this 

project, either through soil sampling campaigns or archived data. The soil P concentrations across all 

of Queensland ranged from 1 to 150 mg kg-1 (Table 1). The Fitzroy grazing land management (GLM) 

region had the highest number of sites at 1340, followed by the Burdekin at 1034. The lowest 

number of sites (57) were found in the Mary GLM region. All other GLM regions had between 111 

(Border Rivers) and 507 (Inland Burnett) sites with soil P data. In terms of concentrations by GLM 

region, the Darling Downs had the highest median and standard deviation of 33 and 48 mg kg-1, 

respectively. This large standard deviation observed is mostly attributed to high variation in parent 

materials (lithology) across the Darling Downs. Cape York, Desert Uplands and Northern Gulf had the 

lowest median soil P values of less than 5 mg kg-1. 
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Figure 2. Soil sampling sites (blue dots) across Queensland used in the spatial modelling of soil P. 

Table 1. Number of sites (n) and the minimum, mean, median, maximum and standard deviation 
(SD) of soil P values (mg kg-1) within each Grazing Land Management (GLM) region across 
Queensland. 

GLM region n Minimum Mean Median Maximum SD 

Border Rivers 111 1 25 16 150 28.6 

Burdekin 1034 1 15.3 8 142 19.1 

Cape York 197 1 5.9 3 105 13.3 

Channel Country 263 2 14.3 11 68 11.4 

Coastal Burnett 260 1 11.9 7 140 17.2 

Darling Downs 125 2 54.8 33 150 48 

Desert Uplands 154 1 7.2 4 93 10.4 

Fitzroy 1340 1 21.9 12 146 25.1 
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Inland Burnett 507 2 25.9 13 150 31 

Mackay Whitsunday 178 1 15.2 9.5 100 17.3 

Maranoa Balonne 177 1 22.8 14 150 26.5 

Mary 57 2 15.6 9 83 15.7 

Mitchell Grass Downs 425 2 15.5 12 91 11.6 

Moreton 367 1 31.9 18 137 31.2 

Mulga 477 1 13.1 8 129 13.6 

Northern Gulf 258 1 7.6 4 63 9.7 

South East 447 1 15.3 7 139 22 

Southern Gulf 223 2 14 8.5 86 14.1 

Wet Tropics 192 1 16.3 6 135 26 

4.2   Model fit 

The QRF model provided an overall moderate performance against the validation dataset with an R2 

of 0.4, bias of -4.28 mg kg-1, RMSE of 18.4 mg kg-1, NRMSE of 12.4% and CCC of 0.48 (Table 2). The 

performance of the statistical model in predicting soil P is consistent with or superior to that 

reported in other studies (Gray, 2023; Kaya et al., 2022; Shahbazi et al., 2019; Zund, 2022; Zund et 

al., 2022). Compared to the previous Queensland soil P map (Zund et al., 2022), an improvement in 

all model metrics were observed. The R2, bias and CCC improved by 48%, 21% and 20%, respectively, 

while the RMSE reduced by 17%. The relatively high RMSE observed in the current study is mostly 

attributed to the large range in soil P values modelled in the dataset (1-150 mg kg-1). However, the 

NRMSE provides a more realistic metric on the model accuracy as the RMSE has been normalised 

according to the difference between the maximum and minimum observed soil P values. The bias 

indicates that the QRF model tends to underestimate predictions compared to the observed soil P 

values, which is also likely attributed to the large range but also the highly-skewed distribution of 

soil P values (Fig. A1). 

Table 2. The QRF model performance metrics (R2, bias, RMSE, NRMSE and CCC) against the validation 
dataset. 

Metric Value 

R2 0.4 
Bias -4.28 mg kg-1 

RMSE 18.4 mg kg-1 
NRMSE 12.4% 

CCC 0.48 

4.3   Covariate importance 

The covariate importance analysis indicated that parent material factors were the most important 

covariates in the QRF model (Table 3). Weathering index was identified as the most important 

covariate, which represents the degree primary minerals have been altered to secondary 

components via weathering processes. Weathering index was followed by equinox rainfall 

seasonality (ratio of spring to autumn rainfall) and several radiometric covariates representing 

parent material. The significance of these spatial covariates in the QRF model aligns with the P cycle, 

reflecting how P is gradually released from parent materials through weathering processes and is 

further influenced by the variances in P content inherent to different lithologies. Pre-settler major 
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vegetation subgroups was also identified as an important covariate, representing native vegetation 

across the state, which can be a surrogate for soil and parent material variability. A few relief factors 

were also identified as important covariates in the QRF model, which are likely to represent the 

movement of P throughout the landscape via erosional processes.



 

 

Table 3. Covariate importance ranking of the spatial covariates used the QRF model and their respective soil forming factors. 

Soil forming factor Covariate information Units Importance 

Parent Material Weathering intensity - 100 

Climate Ratio of Spring (Sep-Nov) to Autumn (Mar-May) cumulative precipitation ratio 84.3 

Parent Material Radiometrics (uranium potassium ratio) ratio 82.9 

Parent Material Radiometrics (thorium potassium ratio) ratio 62 

Parent Material Radiometrics (potassium) % 61.7 

Organism Pre-settler major vegetation subgroups - 60.6 

Soil Estimated smectite in clay minerals (0-20 cm) % 57.4 

Climate Maximum monthly minimum temperature ℃ 49.9 

Soil Estimated illite in clay minerals (0-20 cm) % 49.1 

Parent Material Estimated geology silica content % 48.6 

Climate Minimum differences in atmospheric water deficit seasonality between successive months mm 45.6 

Organism Potential biomass (dry matter) tonnes ha-1 39.2 

Parent Material Minimum geology age - 30.2 

Soil Estimated kaolinite in clay minerals (0-20 cm) % 24.3 

Climate Maximum differences in precipitation between successive months mm 23.4 

Climate Annual thunder days - 20.6 

Parent Material Radiometrics (thorium) ppm 20.3 

Relief Digital elevation model m 19.7 

Climate Maximum monthly mean diurnal temperature range ℃ 18.6 

Climate Ratio of Summer (Dec-Feb) to Winter (Jun-Aug) cumulative precipitation ratio 18.3 

Parent Material Total magnetic intensity (reduced to pole) - 15.9 

Climate Minimum monthly precipitation mm 15.8 

Relief Median slope over 300 m % 15.4 

Climate Minimum difference in temperature between successive months ℃ 10.1 

Relief Elevation range over 1000 m m 9.3 

Parent Material Isostatic residual gravity - 8.6 

Climate Maximum difference of shortwave solar radiation between successive months MJ m2 day-1 5.2 
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Soil forming factor Covariate information Units Importance 

Climate Maximum difference of potential evaporation between successive months mm 3.5 

Relief Prescott index - 1.9 

Climate Annual potential evaporation mm 0 



 

 

4.4   Final prediction maps 

The final prediction map of soil P across all of Queensland is displayed in Fig. 3, aligning with the 

seven P categories in Table 4. The resolution of the map is projected at 30 m, which is a large 

improvement compared to the previous soil P map at 90 m (Zund et al., 2022). The continuous layer 

ranges from 1 to 150 mg kg-1, which will be available on QSpatial and integrated into LongPaddock 

upon review and acceptance of this report. The highest reported soil P values were observed in the 

Darling Downs region, while the lowest soil P values were mostly observed in the Northern Gulf and 

Cape York regions. 30% of Queensland was predicted to have deficient to acutely deficient (<6 mg 

kg-1) concentrations of soil P (Table 4). The largest portion of the state was predicted to have 

moderate soil P concentrations (24%). Only 10% and 3% of the state were predicted to have high 

(16-25 mg kg-1) and very high (>25 mg kg-1) concentrations of soil P, respectively. 

Table 4. Area of Queensland (%) covered by each of the seven P categories. 

P Category 
P Range 
(mg kg-1) 

 Area of Queensland 
(%) 

Acutely deficient ≤4 mg kg-1  18 
Deficient 4 – ≤6 mg kg-1  12 
Marginal 6 – ≤8 mg kg-1  17 

Low 8 – ≤10 mg kg-1  16 
Moderate 10 – ≤16 mg kg-1  24 

High 16 – ≤25 mg kg-1  10 
Very high >25 mg kg-1  3 

 

There were a few artefacts (visual anomalies) identified in the map due to the spatial covariates. 

One of these was caused from weathering index covariate, which can be seen starting in Jericho and 

travelling south to Bayrick. This artefact becomes less noticeable the further you travel east. There 

are also a few small areas across the state on K’gari, Stradbroke Island and Cape Gloucester with 

missing data due to gaps in the spatial covariates. 
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Figure 3. Soil P predictions in the 0-10 cm layer across Queensland categorised into seven P classes. 

The uncertainty predictions followed a similar pattern to the soil P predictions, with high uncertainty 

associated with high concentrations of predicted soil P (Fig. 4). Areas within the Darling Downs, 

around Innisfail and Central Queensland all displayed high levels of uncertainty. The higher 

uncertainty is likely to be generated from a large range in observed data within that region or in 

some cases, from limited data. Low uncertainty levels were mostly associated with areas within the 

Northern Gulf and Cape York regions, where low soil P values were relatively consistent. 
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Figure 4. Uncertainty (uncertainty range/max value of uncertainty range) of soil P predictions across 
Queensland. 

4.4.1 2022 vs 2024 soil P map 

There are some significant differences in the soil P predictions between that developed in this 

project and the previous Queensland soil P map (Zund et al., 2022), as shown in Fig. 5.  The 

differences are likely attributed to the increase in training data and a different statistical model used. 

A larger training dataset can impact how the model is developed by building different relationships 

between the observed soil P data and the spatial covariates. This is particularly true given that the 

northern regions had extremely low soil P values, which was not in the previous map. Furthermore, 

a quantile random forest (QRF) model was used in this study compared to a cubist model in the 

previous map (Zund et al., 2022). A QRF model builds multiple independent decision trees using a 

random subset of the data. In contrast, a cubist model is a rule-based decision tree model which 

builds linear regression models at the terminal nodes of each tree (Quinlan, 1992). A QRF model was 

selected for this study as the QRF model demonstrated greater prediction accuracy compared to 
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cubist, gradient boosting machines and multiple linear regression models in previous milestones but 

also in other studies (e.g. Gomes et al., 2019; Zeraatpisheh et al., 2019). 

The main differences between the two maps are concentrated in the areas of high uncertainty (Fig. 

5). 16% of the total area across the new and old soil P map was calculated to have zero change in soil 

P values, while 60% of the total area had an absolute difference between 0 and 2 mg kg-1 (  
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Table 5.). 86% of the total area was found to have less than a 5 mg kg-1 absolute difference between 

the new and old soil P map. 

 

Figure 5. Absolute differences in soil P (mg kg-1) predictions between the previous map (Zund et 
al., 2022) and the soil P map developed in this study (Fig. 3). 
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Table 5. Percentage of mapping area (%) categorised by the absolute differences in soil P (mg kg-1) 
predictions between the previous soil P map (Zund et al., 2022) and the soil P map developed in this 
study (Fig. 3). 

P difference 
(mg kg-1) 

Map area 
(%) 

0 16 
≤1 42 
≤2 60 
≤3 72 
≤4 80 
≤5 86 

 

  



 B.GBP.0063 - Phosphorus Map of North Queensland Grazing Lands 

Page 23 of 27 

 

5. Conclusion 

5.1   Key findings 

The key findings of this project are the development of a soil P map (plus uncertainties) for north 

Queensland, and the production of a revised soil P map for all of Queensland at a 30 m resolution. 

The maps provide an accurate estimate of soil P, particularly in areas of low uncertainty. The project 

also developed a digital soil mapping framework which is easily repeatable and updatable as new 

data is provided. 

5.2   Benefits to industry 

The soil P map developed provides graziers and stakeholders with a prediction of soil bicarbonate 

extractable P across the entire state of Queensland. The soil P predictions can be used to identify 

P-deficient soils to inform P management via supplementation. The map also provides levels of 

uncertainty, which assists graziers in determining whether additional soil sampling is required, 

particularly given no soil mapping across Queensland is conducted at a sufficient intensity to be used 

at the paddock level. 

The map developed could further aid the red meat industry in: 

• identifying areas with sufficient P suitable for the introduction of legume pastures such as 

Leucaena, Stylos and Desmanthus 

• identifying areas with high uncertainty to guide future soil sampling campaigns 

• raising awareness of the soil P cycle and P deficiencies in grazing systems and how this can 

impact overall productivity 

• identifying areas where soil P depletion might be occurring and how different grazing 

management strategies can be implemented to prevent this. 

6. Future research and recommendations  

The outcomes of this project identified several key future research directions including: 

• The development of a P buffering index map to complement the soil P map and provide an 
accurate estimate of plant available P as the P buffering index indicates the soil’s capacity to 
adsorb and release P, 

• The extension of the updated mapping methodology into the northern regions of Australia 
including the Northern Territory and Western Australia which are known to be P-deficient, 
and 

• The location of areas with high uncertainty where future sampling campaigns could target to 
improve model predictions and reduce uncertainty. 

 
Further recommendations include organising workshop activities to promote the use of the soil P 
map and how it can be integrated into P management plans for the red meat industry. 
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8. Appendix 

 

Figure A 1. Distribution of soil P values (mg kg-1) across Queensland in the modelling dataset. 


