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Abstract 

Spectroscopic sensors such as near-infrared spectroscopy (NIRS), Raman spectroscopy, and 

hyperspectral (HS) imaging were trialled in the present thesis. The four experimental chapters were 

conducted with the purpose of investigating their potential for applications in the meat industries. 

The first study compared a handheld NIRS sensor connected to a smartphone (NIRvascan) against a 

benchtop NIRS sensor to measure chemical composition (pH, moisture, fat, protein) of beef and 

lamb retail cuts in three different sample presentations (fresh intact, freeze-dried, and freeze-dried 

followed by oven-dried). The smartphone NIRS sensor showed moderate precision in predicting fat 

concentration (r2 = 0.78–0.81, residual prediction deviation - RPD = 2.1–2.3), and it was comparable 

to the benchtop NIRS sensor on processed meat. However, predictions from both NIRS sensors on 

fresh intact meat were insufficient for even rough screening in the industry (r2 < 0.67, RPD < 2.0). 

The second study compared the NIRvascan sensor against a Raman spectrometer to differentiate 

grass-fed from grain-fed retail beef cuts. The NIRvascan was more accurate than the Raman when 

scanning lean tissue, whereas the Raman was more accurate on fat tissue (both >90% accuracy). The 

portable nature, low cost, smartphone connectivity, and similar accuracy of the NIRvascan made it a 

more viable option for industry and consumer use compared to larger and more expensive 

instruments. The third study used a multi-sensory platform containing two HS sensors (visible – VIS: 

400–900 nm, and short-wave infrared – SWIR: 900–1700 nm) to classify beef and sheep organs by 

organ type (heart, kidney, liver, or lung). Hearts and livers were the most accurately identified 

organs (accuracy >90%), whereas kidneys and lungs were less accurate (50–70%). The fourth study 

used the same multi-sensory platform to identify sheep organs rejected or fit for human 

consumption. Hearts and livers were more accurately (78–96%) discriminated as diseased or healthy 

compared to kidneys and lungs (60–91%). In the latter two chapters, the SWIR and VIS HS sensors 

achieved similar accuracy although VIS was slightly more accurate in differentiating organ type and 

SWIR was slightly more accurate in differentiating organs rejected or not for human consumption. In 

conclusion, three of the four chapters showed the potential of these novel spectroscopic sensors for 
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applications in the meat industries and further studies with larger sample sizes are encouraged. 

Furthermore, the multi-sensory platform showed excellent potential for the meat industry because 

it is non-contact and can run at chain speed, therefore studies looking into chemical composition 

and discrimination of meat based on feeding regime using HS imaging in this platform should be 

conducted in the future.  
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1. Use of spectroscopic sensors in meat and livestock industries – 

literature review 

1.1. Introduction 

The demand for the delivery of a high-quality, safe meat product to the population has become 

crucial, particularly in recent years where quality has taken precedence over quantity for consumers 

(Polkinghorne & Thompson, 2010; Strong, 2004). Recent research has found that regardless of 

country of origin, consumers are willing to pay a higher price for higher quality meat (Pethick et al., 

2018; Polkinghorne & Thompson, 2010; Thompson et al., 2010). Different measures and thresholds 

of meat quality exist. However, basic principles remain the same such as a bloomed cherry-red 

muscle colour at retail level (Mancini & Hunt, 2005; Suman et al., 2014), and tenderness of the 

cooked product (Miller et al., 2001; Savell & Cross, 1988). Marbling, or visible intramuscular fat 

(IMF), is a defining characteristic of meat quality as its content is linked to increased tenderness, 

juiciness, flavour, and overall liking (Frank et al., 2016; Miller, 2020; Pannier et al., 2014). These traits 

are prioritised by consumers even in developing countries including South Africa (Bonny et al., 2018; 

Thompson et al., 2010), China (O’Reilly et al., 2017) and Brazil (Magalhães et al., 2018). 

 At abattoir level, quality of beef and lamb is mostly measured subjectively, with the 

exception of pH, where meat is graded against scales for colour and marbling scores. Australian 

grading systems such as AUS-MEAT (AUS-MEAT, 2005; AUS-MEAT, 2018) and the consumer score-

based Meat Standards Australia (MSA) (MLA, 2012; MLA, 2017a; Polkinghorne et al., 2008) are 

considered as the most comprehensive in the world, although they still rely heavily on subjective 

grading (Pannier et al., 2018; Polkinghorne & Thompson, 2010). Laboratory chemical measures for 

crude fat and protein exist, though their uses are expensive, time consuming and external to meat 

processing. To combat these issues, larger devices such as computed tomography (CT), X-ray 

attenuation (single-, dual-, or multi-energy) and ultrasound have been used at meat processing 
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plants to predict carcase yield to varying degrees of success (Scholz et al., 2015). However, the sheer 

expense and space requirements of such devices, as well as the training of staff to use them, has 

seen their uptake slow. Furthermore, meat quality has been the pre-eminent measure desired in 

processing plants around the world for several decades, with particular focus on IMF (Hwang et al., 

2004; Pannier et al., 2018; Thompson, 2004). For this, smaller devices such as near-infrared 

reflectance (NIR) spectroscopy (NIRS) sensors have shown immense promise (Prieto et al., 2009; 

Prieto et al., 2017), with smaller handheld NIR devices a likely solution to this problem (Dixit et al., 

2017). Near-infrared reflectance spectroscopy sensors and other devices that will be explored in this 

review include hyperspectral imaging (HS; Elmasry et al., 2012a) and Raman spectroscopy (Xu et al., 

2020), which have been chosen due to being less expensive and easier to use. 

 Sensors, including various spectroscopy sensors, have also been used in animal production 

to remotely monitor animal performance, particularly weight, feed intake, growth rate, and disease 

status (Neethirajan et al., 2016). Animal health has been mentioned as a particularly crucial area of 

research for remote monitoring, particularly because this is labour-intensive for veterinarians and 

personnel both on-farm and in the abattoir, and potential zoonotic diseases raise issues for human 

health (Butler et al., 2003; Webber et al., 2012). However, only few studies have been successful in 

employing sensors in animal health monitoring, particularly in the abattoir (Thomas-Bachli et al., 

2014). Thus, automatic detection of diseases in abattoirs has been an emerging area of interest via 

reports from AgResearch (2018) and Meat and Livestock Australia (Cook & Anderson, 2017), 

although very few peer-reviewed journal articles have been published beyond small pilot 

experiments. 

 Several studies have explored the potential of spectral sensors to the meat industries which 

will be detailed in the forthcoming sections, with the ensuing experimental chapters focusing on 

specific areas of the meat processing and supply chain. Paucities have been revealed in current 

literature, namely evaluation of meat quality, authentication of feeding regime, and identification of 
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offal type and defects including those arising from animal health issues. Consequently, spectroscopic 

sensor devices have been developed to allow for automation in these sectors of the meat supply 

chain and can be deployed based on successful experimental results and future feasibility studies. 

The use of optimal mathematical modelling for the data from each device and its predictive outcome 

is also discussed briefly throughout the sections of the review and discussed at the end of the 

review. The objective of the present review is to provide a solid background to the use of 

spectroscopic sensors in meat science, identify research gaps which can then be addressed in the 

experimental chapters of the present thesis, and propose further research to improve meat science 

evaluation with such sensors.  
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1.2. Spectroscopy in meat science 

Spectroscopy has been widely investigated in meat science to measure eating quality (Prieto et al., 

2009), chemical composition (Prieto et al., 2017), and many other attributes of meat (Dixit et al., 

2017; Dixit et al., 2021). Spectroscopy is the measurement of the interaction between radiation 

intensity and matter as a function of wavelength (Williams et al., 2019). Different samples of matter 

have different spectral signatures generated during their interaction with electromagnetic radiation, 

with the signature across the electromagnetic spectrum allowing the physical and electronic 

structure to be determined at atomic, molecular, and macro scales (Wadoux et al., 2021). The 

electromagnetic spectrum defines spectroscopy as microwave, terahertz, infrared, near-infrared, 

visible (VIS), ultraviolet (UV), X-ray, and gamma-ray depending on wavelength and frequency (Fig. 1). 

Furthermore, the nature of the interaction between radiation energy and matter determines the 

type of spectroscopy which can be classified as absorption, emission, reflection, elastic scattering, 

inelastic scattering, and nuclear spectroscopy (Delpy & Cope, 1997). A vast variety of spectroscopic 

sensors and technologies exist for applications in meat science including spectrometers for VIS, vis-

NIR, NIR, short-wave infrared (SWIR, 900–1800 nm) and Raman spectroscopies. In addition, 

hyperspectral imaging can be used to create a complete picture of the environment or objects of 

interest whereby each pixel contains reflectance intensity information throughout the VIS and NIR 

spectra (Elmasry et al., 2012a). The following section contains a review of these latter methodologies 

for application in meat science, specifically for purposes of chemical composition and classification 

for authentication. 
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Fig. 1. The electromagnetic spectrum (Lillesand et al., 2015). UV – ultraviolet; NIR – near-infrared; 

MIR – mid-infrared; FIR – far-infrared. 

 

1.2.1. Near-Infrared Reflectance Spectroscopy (NIRS) 

Near-infrared reflectance spectroscopy (NIRS) is the section of the electromagnetic spectrum 

between 750 to 2500 nm. Traditionally, NIRS is used to predict chemical composition of soil 

(Wadoux et al., 2021), medicines (Zontov et al., 2016), ground grain, forages, and feed products 

(Williams, 2001), and dried and ground faecal matter from livestock (Dixon and Coates, 2009). 

Several studies have used NIRS to predict quality of meat, including tenderness, juiciness, flavour, 

colour, and pH (Prieto et al., 2009; Dixit et al., 2017; Dixit et al., 2021). In addition, NIRS sensors are 

used to predict chemical composition of meat because different chemical bonds produce vibrations 

reflected as peaks in the resulting spectrum where strong reflectance or absorption of energy is high 

(Ben-Gera & Norris, 1968; Osborne et al., 1993). Such chemical bonds correspond to protein (N-H), 

water (O-H) and fat (C=C, C-H) in the meat sample (Osborne et al., 1993; Prevolnik et al., 2004). 

Several sensors, particularly larger benchtop spectrometers, utilise the visible spectrum between 

350 and 780 nm in addition to the NIR spectrum (vis-NIRS: 350–2500 nm) as it produces more 

accurate results with increased wavelength (Prieto et al., 2017). Smaller handheld sensors often 

utilise only the short-wave NIR spectrum (900–1600 nm) with a lower spectral resolution, reducing 

their performance (Zontov et al., 2016). However, selection of wavelength to only this range has 
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shown improved performance than the longer-wave NIR wavelength range (Byrne et al., 1998; 

Shackelford et al., 2004).  

 

1.2.2. Raman spectroscopy 

Another device that has received numerous publications in meat science is Raman spectroscopy. 

Raman spectroscopy was developed in 1928, and since the 1960s has been used due to its 

combination with lasers, whereupon interactions of photons and material result in vibrational 

energy resulting in backscattered frequency peaks existing at different relative wavenumbers, 

known as Raman shifts, due to different chemical bonds (Fowler et al., 2017; Xu et al., 2020). Raman 

spectroscopy has been traditionally used in the pharmaceutical industry as an authentication tool 

due to its ability to characterise molecular structures of chemicals (Huang et al., 2010). However, its 

use in meat science has resulted in variable accuracy and precision to predict meat quality and 

chemical composition (Cama-Moncunill et al., 2020; Fowler et al., 2015a; Fowler et al., 2017). 

 

 1.2.3. Hyperspectral imaging 

Hyperspectral images are formed from measurements of the reflectance or absorption of light in 

multiple spatial points and multiple spectral wavelengths which allow the formation of an image 

with spectral information for each pixel. The HS images are downloaded as a hypercube with two 

spatial dimensions and one spectral dimension, resulting in hundreds of wavebands for each spatial 

dimension, which can be very large. However, these hypercube images can provide information 

about the shape, size, and colour of food products (Elmasry et al., 2012a). Each pixel within a HS 

image has a different spectral signature, and several pixels can form a region of interest (ROI) within 

an image where pixel spectra can be averaged, indices calculated, or prediction algorithms applied 

(Huang et al., 2014a). Hyperspectral imaging is a method of non-contact spectroscopy, which has 
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been used in studies with food and agricultural products integrating VIS and NIR spectra, with a 

pushbroom system or conveyor belt transporting an object of interest to be scanned by the HS 

sensors (Baeten et al., 2007; Elmasry et al., 2012a; Wold et al., 2006; Xu & Sun, 2017). Other types of 

sensors can also be a part of a line scanning HS system in order to provide a better spectral profile 

(Dixit et al., 2021). This provides a similar non-invasive line scanning method to real-time ultrasound, 

CT or X-ray attenuation as well as the detail for chemical parameters as demonstrated by NIRS, 

which provides significant advantages to the meat processing industry where sensors can become 

contaminated by contact with carcases and human operators (Elmasry et al., 2012a; Xu & Sun, 

2017). Automation, particularly using multi-sensory platforms, is an emerging phenomenon in meat 

and animal science, with accurate traceability of livestock and products, plus information on the 

yield, composition and quality of meat and primal cuts desired by consumers (Scholz et al., 2015). 
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1.3. Applications of spectroscopy in meat science 

Spectroscopy has found a plethora of applications in the meat industry but the most common and 

important include the measurement of meat eating quality, chemical composition, product 

authentication, and product safety for human consumption. This section describes these 

applications of spectroscopic sensors in the meat industry. 

 

1.3.1. Meat quality and chemical composition 

Near-infrared reflectance spectroscopy has been used predominantly in meat science for the 

prediction of chemical composition, where it has been more accurate compared to prediction of 

physical traits such as pH or eating quality traits including tenderness (Dixit et al., 2017; Prevolnik et 

al., 2004). Despite extensive research with NIRS to measure meat eating quality and chemical 

composition in the meat industry over the past two decades, NIRS sensors and devices are still not 

widely adopted in the industry for a variety of reasons that will be highlighted in the present section. 

Several studies have used the NIR spectrum to determine the concentration of water, protein, and 

fat in meat samples, whether fresh intact, minced, dried, or ground. Table 1 presents a detailed 

summary of previous research on the use of NIRS in measuring the chemical composition of meat 

with the main applications, accuracy and precision achieved, and considering some of the most 

important factors that can affect the precision and accuracy of predictions. A discussion of the 

factors affecting the accuracy of the prediction is discussed in section 4 below. 

 Studies over the past two decades have particularly focused on predicting IMF content 

within a given sample and making comparisons to conventional subjective marbling scores and 

objective chemical determination such as the Association of Official Analytical Chemists (AOAC) 

Soxhlet method (Helrich, 1990) using spectroscopy (Prieto et al., 2017). The NIR estimation of 

chemical IMF is believed to be more accurate than, and certainly have objectivity, compared to 

traditional marbling score for grading of meat (Bindon, 2004), particularly as different nations use 
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different marbling grading systems that are not based on chemical IMF concentration (Polkinghorne 

& Thompson, 2010; Strong, 2004). Consequently, few studies have sought to chemically measure 

IMF concentration against subjective marbling (Bindon, 2004; Ferguson, 2004; Harper et al., 2003; 

Johnston et al., 1999; Moore et al., 2010; Savell et al., 1986). In support of Bindon (2004) who 

suggested development of on-line NIRS to measure IMF, studies predicting chemical IMF both in 

laboratories using benchtop devices (Table 1) and on-site using portable devices (Table 2) have 

shown good precision and accuracy for research or industry screening. For example, Williams (2001) 

reported coefficient of determination of calibration (R2
cal) of 0.50 to 0.83 and residual prediction 

deviation (RPD) >2 for various agricultural products to be sufficient for rough screening, and R2
cal > 

0.83 and RPD >3 for use of the calibration equations in research. These values were adapted for 

research in intact and homogenised meat (Barlocco et al., 2006). However, studies using NIRS on 

intact beef rib eye to predict marbling score as opposed to chemical fat have tended to yield very 

poor precision and accuracy (R2
cal

 < 0.10; Magalhães et al., 2018). Therefore, the literature suggests 

that factors such as the characteristics of the trait being predicted, sample presentation and 

preparation, and the statistical methods for model development, and metrics used to present results 

could have a large influence on the interpretation and applicability of the results.
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Table 1. Use of benchtop near-infrared spectroscopy sensors to determine chemical composition of meat. All precision and accuracy metrics are on the 

validation dataset unless indicated otherwise. 

Brand Wavelength 

range (nm) 

Size (L x W x H, 

cm, kg) 

Spectral interval and 

number of scans 

Meat sample Precision and accuracy metrics Reference 

Neotec 6350 1100-2500 NA Spectral interval 2 nm 

50 scans per sample 

Ground beef 

and pork 

Moisture (rval = 0.93–0.98, bias = 

0.01–0.42) 

Protein (rval = 0.53–0.87, bias = 

0.01–0.19) 

Fat (rval = 0.99–1.00, bias = 0.06–

0.18) 

Lanza (1983) 

FOSS NIRSystems 

6500 

400-2498 29.5 x 38.8 x 54.6, 

18.9 kg 

Spectral interval 2 nm 

32 scans per sample 

Intact and 

minced beef 

Moisture (r2
CV = 0.36–0.72, SECV = 

10.4–15.5) 

Protein (r2
CV = 0.50–0.79, SECV = 

5.5–8.8) 

Fat (r2
CV = 0.19–0.71, SECV = 4.7–

8.1) 

Cozzolino et al. 

(2000) 

FOSS NIRSystems 

6500 

400-2500 29.5 x 38.8 x 54.6, 

18.9 kg 

Spectral interval 2 nm 

32 scans per sample 

Intact and 

minced beef, 

lamb and 

chicken 

Moisture (r2
CV = 0.01–0.96, SECV = 

6.9–33.1) 

Protein (r2
CV= 0.26–0.97, SECV = 

2.4–23.9) 

Fat (r2
CV = 0.18–0.93, SECV = 4.7–

46.9) 

Cozzolino and 

Murray (2002) 
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Beef pH (R2
CV = 0.76–0.87, SECV = 

0.13–0.18) 

FOSS NIRSystems 

6500 

400-2500 29.5 x 38.8 x 54.6, 

18.9 kg 

Spectral interval 2 nm 

32 scans per sample 

Intact and 

minced beef 

Moisture (R2
CV = 0.09–0.41, SECV = 

15.6–16.1) 

Protein (R2
CV = 0.48–0.71, SECV = 

20.5–23.9) 

Fat (R2
CV = 0.89–0.92, SECV = 43.4–

46.9) 

Cozzolino et al. 

(2002) 

FOSS NIRSystems 

6500 

400-2498 29.5 x 38.8 x 54.6, 

18.9 kg 

Spectral interval 2 nm 

30 scans per sample 

Minced beef Moisture (r2
CV = 0.77, SECV = 0.58) 

Protein (r2
CV= 0.82, SECV = 0.48) 

Fat (r2
CV = 0.82, SECV = 0.44) 

Ash (r2
CV = 0.66, SECV = 0.03) 

Alomar et al. 

(2003) 

FOSS NIRSystems 

6500 

400-2500 29.5 x 38.8 x 54.6, 

18.9 kg 

Spectral interval 2 nm 

32 scans per sample 

Intact and 

minced pork 

Moisture (r2
CV = 0.66–0.90, SECV = 

1.1–3.1, RPD = 1.4–3.9) 

Fat (r2
CV = 0.30–0.87, SECV = 1.8–

4.0, RPD = 1.1–2.3) 

Barlocco et al. 

(2006) 

FOSS NIRSystems 

5000 

1100-2498 29.5 x 38.8 x 54.6, 

18.9 kg 

Spectral interval 2 nm Minced and 

freeze-dried 

beef 

Moisture (r2
CV = 0.91, SECV = 0.26–

0.35) 

Protein (r2
CV = 0.64, SECV = 0.20–

0.33) 

Fat (r2
CV = 0.99, SECV = 0.13–0.20) 

Ash (r2
CV = 0.38–0.86, SECV = 0.03–

0.09) 

De Marchi et al. 

(2007) 
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Bran und Lübbe 

InfraAlyzer 500 

1100-2500 58 x 73 x 50, 78.8 

kg 

Spectral interval 2 nm Freeze-dried 

and ground 

mutton 

Moisture (r2
val = 0.92, SEval = 0.38) 

Protein (r2
val = 0.99, SEval = 0.92) 

Fat (r2
val = 0.99, SEval = 0.43) 

Ash (r2
val = 0.94, SEval = 0.15) 

Viljoen et al. 

(2007) 

FOSS NIRSystems 

6500 

400-2500 29.5 x 38.8 x 54.6, 

18.9 kg 

Spectral interval 2 nm 

1 scan per sample 

Homogenised 

pork and other 

meats 

Moisture (r2
val = 0.67–0.96, RPD = 

1.2–5.0) 

Protein (r2
val = 0.11–0.96, RPD = 

1.1–4.5) 

Fat (r2
val = 0.94–0.96, RPD = 4.1–

10.1) 

Prevolnik et al. 

(2010) 

Perten DA7200 950-1650 39.0 x 37.0 x 51.7 

cm, 13 kg 

Spectral interval 1 nm 

4 scans per sample 

Minced beef Moisture (r2
CV = 0.71, r2

val = 0.93) 

Protein (r2
CV = 0.81, r2

val = 0.92) 

Fat (r2
CV = 0.83, r2

val = 0.91) 

pH (r2
CV = 0.24, r2

val = 0.72) 

Yang et al. 

(2010) 

SupNIR-1000 1000-1799 35.5 x 27.8 x 11.7, 

6 kg 

Spectral interval 1 nm 

3 scans per sample 

Intact and 

minced beef 

Moisture (r2
val = 0.81–0.86, SEval = 

0.49–0.70) 

Protein (r2
val = 0.76–0.90, SEval = 

0.39–0.48) 

Fat (r2
val = 0.66–0.94, SEval = 0.55–

0.73) 

Sun et al. (2011) 

FOSS NIRSystems 

5000 

1100-2498 29.5 x 38.8 x 54.6, 

18.9 kg 

Spectral interval 2 nm 

2 scans per sample 

Minced beef Fat (r2
CV = 0.82, RMSECV = 0.56, RPD 

= 2.13) 

Cecchinato et al. 

(2012) 
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FOSS NIRSystems 

6500 

400-2500 29.5 x 38.8 x 54.6, 

18.9 kg 

Spectral interval 2 nm 

32 scans per sample 

Ground and 

homogenised 

pork 

Moisture (r2
val = 0.97, SEval = 0.38–

0.63, RPD = 6.02–7.28) 

Protein (r2
val = 0.88–0.90, SEval = 

0.55–0.76, RPD = 2.69–3.23) 

Fat (r2
val = 0.99, SEval = 0.38–0.50, 

RPD = 8.44–10.02) 

Zamora-Rojas et 

al. (2012) 

FOSS NIRSystems 

6500 

400-2498 29.5 x 38.8 x 54.6, 

18.9 kg 

Spectral interval 2 nm 

2 scans per sample 

Dried and 

ground beef and 

lamb 

Fat (r2
CV = 0.95–0.98, SECV = 0.25, 

RPD = 4.60–6.59) 

Mourot et al. 

(2014) 

FOSS NIRSystems 

6500 

400-2498 29.5 x 38.8 x 54.6, 

18.9 kg 

Spectral interval 2 nm 

32 scans per sample 

Ground beef Moisture (R2
cal = 0.90, RMSECV = 

0.60, RPD = 2.13) 

Protein (R2
cal = 0.85, RMSECV = 0.48, 

RPD = 2.10) 

Fat (R2
cal = 0.86, RMSECV = 1.08, 

RPD = 2.01) 

pH (R2
cal = 0.73, RMSECV = 0.09, RPD 

= 1.14) 

Prieto et al. 

(2014a) 

SupNIR-1500 1000-1800 

nm 

35.5 x 27.8 x 11.7, 

6 kg 

Spectral interval 1 nm 

3 scans per sample 

Minced 

homogenised 

beef 

Moisture (r2
val = 0.94–1.00, SEval = 

1.22–4.95, RPD = 2.63–10.69) 

Protein (r2
val = 0.95–0.98, SEval = 

0.69–1.40, RPD = 2.71–5.46) 

Fat (r2
val = 1.00, SEval = 0.98–1.21, 

RPD = 14.22–17.37) 

Su et al. (2014) 
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StellarNet EPP2000-

CXR-Srs plus 

EPP2000-InAs-512 

400-1395 45.7 x 35.6 x 17.8 Spectral interval 5 nm 

2 scans at 10 locations 

per sample 

Intact pork IMF (r2
CV = 0.22, SECV = 1.09, RPDCV 

= 1.2, r2
val = 0.33, SEval = 1.03, RPDval 

= 1.3) 

pH (r2
CV = 0.70, SECV = 0.11, RPDCV = 

2.1, r2
val = 0.75, SEval = 0.11, RPDval = 

2.1) 

Balage et al. 

(2015) 

ASD FieldSpec Pro 350-2500 33 x 11.4 x 40. 6, 

5.44 kg 

Spectral resolution 3-10 

nm 

3 x 10 mm scans per 

sample at same location 

Intact lamb IMF (r2
CV = 0.70, RMSECV = 0.46, 

RPDCV = 1.93, r2
val = 0.66, RMSEval = 

1.48, RPDval = 1.79) 

Pullanagari et 

al. (2015) 

ASD LabSpec 5000 

and LabSpec 4 Hi-Res 

350-2500 36.8 x 29.2 x 12.7, 

5.44 kg 

Spectral resolution 1 nm 

1 scan x 1 location per 

sample 

Intact beef IMF (r2
CV = 0.70) Pham et al. 

(2018) 

FOSS NIRSystems 

6500 

400-2498 29.5 x 38.8 x 54.6, 

18.9 kg 

Spectral interval 2 nm 

32 scans per sample 

Ground and 

freeze-

dried/ground 

beef 

Fat (r2
val = 0.93, SEval = 1.00–1.01, 

bias = 0.0) 

Andueza et al. 

(2019) 

ASD LabSpec 5000 350-2500 36.8 x 29.2 x 12.7, 

5.44 kg 

Spectral resolution 3-10 

nm 

Spectral interval 1 nm 

40 scans x 1 location per 

sample 

Ground and 

freeze-dried and 

ground lamb 

Fat (r2
CV = 0.88–0.89, RMSECV = 

0.38–0.4, r2
val = 0.75–0.83, RMSEval 

= 0.41–1.49) 

Dixit et al. 

(2020) 

ASD LabSpec 4 Hi-

Res 

350-2500 29.2 x 36.8 x 12.7, 

5.44 kg 

Spectral resolution 3-6 

nm 

Ground and 

freeze-dried and 

ground lamb 

Fat (r2
CV = 0.89, RMSECV = 0.36, r2

val 

= 0.79, RMSEval = 0.38) 

Dixit et al. 

(2020) 
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Spectral interval 1 nm 

40 scans x 1 location per 

sample 

ASD LabSpec 5000 350-2500 36.8 x 29.2 x 12.7, 

5.44 kg 

Spectral resolution 3-10 

nm 

Sampling interval 1.4-2 

nm 

40 scans x 6 locations per 

sample 

Scan time 7 s 

Intact beef IMF (r2
CV = 0.88, SECV = 1.21, r2

val = 

0.88, SEval = 1.16, bias = 0.08, RPD = 

2.87) 

pH (r2
CV = 0.90, SECV = 0.16, r2

val = 

0.84, SEval = 0.19, bias = 0.02, RPD = 

2.54) 

Dixit et al. 

(2021) 

ASD LabSpec 4 Hi-

Res 

350-2500 29.2 x 36.8 x 12.7, 

5.44 kg 

Spectral resolution 3-10 

nm 

Sampling interval 1.4-2 

nm 

Scan time 7 s 

Single line scan 

Intact beef IMF (r2
CV = 0.91, SECV = 1.02, r2

val = 

0.89, SEval = 1.12, bias = 0.02, RPD = 

2.97) 

pH (r2
CV = 0.87, SECV = 0.17, r2

val = 

0.86, SEval = 0.18, bias = 0.01, RPD = 

2.72) 

Dixit et al. 

(2021) 

ASD LabSpec 2500  350-1830 13 x 37 x 29, 6.2 

kg 

Spectral resolution 3-10 

nm 

Sampling interval 1 nm 

1 scan x 3 locations per 

sample 

Intact beef Moisture (r2
val = 0.51, RMSEval = 

1.25) 

Protein (r2
val = 0.46, RMSEval = 0.51) 

Fat (r2
val = 0.46, RMSEval = 1.06) 

Ash (r2
val = 0.06, RMSEval = 0.06) 

pH (r2
val = 0.19, RMSEval = 0.11) 

Patel et al. 

(2021) 
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r2
CV – coefficient of determination of cross-validation; r2

val – coefficient of determination on the validation dataset; R2
Cal – coefficient of determination on the 

calibration dataset; RMSECV – root mean square error of cross-validation; RMSEval – root mean square error on the set-aside validation dataset; SECV - standard 

error of cross-validation; SEval – standard error on the set-aside validation dataset; RPD – residual prediction deviation; IMF – intramuscular fat. 

Note: Fat and IMF are used interchangeably as they are dependent on their mention in the original study. 
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 The move towards smaller, handheld devices that can be used for on-site scanning in the 

industry was reviewed comprehensively by Dixit et al. (2017). Although benchtop devices encompass 

a greater wavelength range and often showed r2 values exceeding 90% for predicting the 

concentration of fat and protein (Table 1), most of these findings took place in laboratories as the 

devices (even those labelled as portable) were too bulky to effectively be used in meat processing 

plants where thousands of carcases may need to be graded daily (Teixeira dos Santos et al., 2013). 

Additionally, ground meat was found to dominate in the most successful studies, which lacks 

applicability as a non-invasive tool that can be used on the surfaces of unprocessed meat such as 

carcases in abattoirs where meat grading is performed or even primal or retail cuts (Dixit et al., 

2017). Consequently, Viljoen et al. (2007) suggested that the meat processing industry would benefit 

more from a device applicable to fresh meat grading than a very accurate (>95%) prediction that 

required preparation such as grinding, drying, or transportation to a laboratory. Despite this, few 

studies have explored truly handheld NIRS sensors, particularly those that connect via Bluetooth to a 

smartphone (Goi et al., 2022). In general, studies that have been published in the last decade have 

shown favourable, but not optimal, results for precision and accuracy of handheld sensors to 

measure chemical composition of beef and lamb (Table 2). However, the technology is advancing 

fast and future sensors may provide more accurate predictions. Observations from Table 2 indicate 

that handheld sensors can predict fat concentration of meat with r2
val between 0.27 and 0.98, and 

protein with r2
val between 0.23 to 0.85. It is important to note that different handheld sensors have a 

broad range of wavelengths, and this could also be affecting the results, in addition to sample 

processing and presentation (Teixeira dos Santos et al., 2013). In addition, studies on measurement 

of chemical composition using these sensors have been limited, often to only IMF (Table 2).  
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Table 2. Handheld NIR spectral sensors used to determine chemical composition of meat. All precision and accuracy metrics are on the validation dataset 

unless indicated otherwise. 

Brand Wavelength 

range (nm) 

Size (L x W x H, 

cm, kg) 

Spectral interval and 

number of scans 

Meat sample Precision and accuracy metrics Reference 

Polychromix Phazir 

1624 MEMS-NIRS 

1600-2400 25.4 x 15.2 x 29.4, 

1.7 kg 

Spectral resolution 12 nm 

Sampling interval 8 nm 

10 scans x 4 locations per 

sample 

Ground and 

homogenised 

pork 

Moisture (r2
val = 0.97, SEval = 0.73, 

RPD = 5.81) 

Protein (r2
val = 0.85, SEval = 0.66, 

RPD = 2.51) 

Fat (r2
val = 0.98, SEval = 0.72, RPD = 

8.08) 

Zamora-Rojas et 

al. (2012) 

Texas DLP NIRScan 

Nano EVM 

900-1700 6.2 x 5.8 x 3.6, 84 

g 

Spectral resolution 10 nm 

Sampling interval 0.96-2.6 

nm 

1 scan x 3 locations per 

sample 

Intact beef IMF (r2
CV = 0.67, RMSECV = 2.46) Pham et al. 

(2018) 

ASD QualitySpec 

Trek 

350-2500 30 x 10 x 31, 2.5 

kg 

Spectral resolution 3-9.8 

nm 

Spectral interval 1 nm 

1 scan x 1 location per 

sample 

Intact beef IMF (r2
CV = 0.54, RMSECV = 2.98) Pham et al. 

(2018) 
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ASD QualitySpec 

Trek 

350-2500 30 x 10 x 31, 2.5 

kg 

Spectral resolution 3-9.8 

nm 

Spectral interval 1 nm 

50 scans x 1 location per 

sample 

Ground and 

freeze-dried and 

ground lamb 

IMF (r2
CV = 0.86, RMSECV = 0.40, 

r2val = 0.83, RMSEval = 0.43) 

Dixit et al. (2020) 

Texas DLP NIRScan 

Nano EVM 

900-1700 6.2 x 5.8 x 3.6, 84 

g 

Spectral resolution 10 nm 

Sampling interval 0.96-2.6 

nm 

15 scans x 3 locations per 

sample 

Ground and 

freeze-dried and 

ground lamb 

IMF (r2
CV = 0.85–0.88, RMSECV = 

0.38–0.47, r2
val = 0.27–0.83, 

RMSEval = 0.38–1.28) 

Dixit et al. (2020) 

ASD TerraSpec Halo 350-2500 11.7 x 4.0 x 12.3, 

2.5 kg 

Spectral resolution 3-9.8 

nm 

1 scan x 5 locations per 

sample 

Intact lamb IMF (r2
CV = 0.36–0.58, RMSECV = 

0.79-0.97) 

Fowler et al. 

(2020) 

Grain It Aurora NIR 950-1650 23 x 12 x 7, 2 kg Spectral resolution 10 nm 

Sampling interval 2 nm 

1 scan x 3 locations per 

sample 

Intact beef Moisture (r2
val = 0.63, RMSEval = 

1.07) 

Protein (r2
val = 0.23, RMSEval = 

0.62) 

Fat (r2
val = 0.66, RMSEval = 0.80) 

Ash (r2
val = 0.01, RMSEval = 0.06) 

pH (r2
val = 0.04, RMSEval = 0.16) 

Patel et al. (2021) 

JDSU Micro NIR Pro 905-1649 4.5 x 4.5 x 4.2, 60 

g 

Spectral resolution 10 nm Intact beef Moisture (r2
val = 0.70, RMSEval = 

0.96) 

Patel et al. (2021) 
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Sampling interval 2 nm 

1 scan x 3 locations per 

sample 

Protein (r2
val = 0.42, RMSEval = 

0.52) 

Fat (r2
val = 0.62, RMSEval = 0.86) 

Ash (r2
val = 0.03, RMSEval = 0.06) 

pH (r2
val = 0.19, RMSEval = 0.14) 

Consumer Physics 

SCiO 

740-1070 4.0 x 1.9 x 6.8, 35 

g 

Spectral resolution 10 nm 

Sampling interval 1 nm 

1 scan x 5 location per 

sample 

Intact beef Moisture (r2
CV = 0.84, SECV = 0.60, 

RPD = 2.48) 

Protein (r2
CV = 0.66, SECV = 0.59, 

RPD = 1.72) 

Fat (r2
CV = 0.79, SECV = 0.80, RPD = 

2.19) 

pH (r2
CV = 0.52, SECV = 0.06, RPD = 

1.46) 

Goi et al. (2022) 

r2
CV – coefficient of determination of cross-validation; r2

val – coefficient of determination on the validation dataset; RMSECV – root mean square error of cross-

validation; RMSEval – root mean square error on the set-aside validation dataset; SECV - standard error of cross-validation; SEval – standard error on the set-aside 

validation dataset; RPD – residual prediction deviation; IMF – intramuscular fat. 

Note: Fat and IMF are used interchangeably as they are dependent on their mention in the original study. 
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 Hyperspectral imaging has been used successfully in beef to determine chemical 

composition (Kamruzzaman et al., 2012a) and quality traits such as pH, shear force and colour 

(Kamruzzaman et al., 2012b; Wang & Peng, 2018), and discrimination into different quality 

categories such as by tenderness grade (Konda Naganathan et al., 2008). In more recent studies, HS 

imaging showed very positive results in predicting IMF concentration in intact meat in real time 

(Dixit et al., 2021; Hitchman et al., 2021). Dixit et al. (2021) found that the VIS-NIR wavelength range 

(670–950 nm) showed greater accuracy and precision for pH and IMF concentration predictions than 

visible-only (470–630 nm), although the difference was much more pronounced for IMF (Table 4). 

The use of HS to classify samples into categories based on different spectral signatures has yielded 

high accuracy. Konda Naganathan et al. (2008) found that 100% of tough steaks were classified as 

tough, and more than 95% of tender steaks were classified as tender, although the sample size of 

tough steaks was very small. 

 Similar to the recent HS studies, charge coupled device (CCD) (Kuchida et al., 2000) and 

mirror-type cameras (Kuchida et al., 2001) have been developed to analyse rib eye marbling of cattle 

for commercial use. Due to the ability of the camera to predict the fat area ratio of a rib eye, as well 

as the overall and maximum coarseness of marbling particles and the number of small flecks 

(Nakahashi et al., 2008), the measure is denoted as objective marbling percentage and an alternative 

to chemical IMF measurement (Connolly et al., 2020; Kuchida et al., 2000; Maeda et al., 2014; 

Stewart et al., 2021). Very high precision and accuracy (r2 = 0.96; bias -6.4 to 4.0 %) was found 

between crude fat and charge coupled objective marbling over a wide range of IMF concentration 

(2.9–39.8% IMF) (Kuchida et al., 2000). However, lower precision (r2 = 0.52) was found using mirror-

type cameras on Korean beef (6–25% IMF), though this was greater than the relationship between 

crude fat and subjective marbling (r2 of 0.41) (Beak et al., 2021). It is worth noting that most of the 

above studies have been undertaken on Japanese and Korean cattle with 16-66% of the eye muscle 

area represented by marbling but most carcases in the global meat industry have significantly less 

marbling. Over the past 2-3 decades, video image analysis systems such as the VIAscan have been 
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developed for commercial objective evaluation of marbling against the United States Department of 

Agriculture (USDA) marbling score (Belk et al., 2000; Moore et al., 2010), AUS-MEAT marbling in 

Australia (Ferguson, 2004; Stewart et al., 2021) and against MSA traits in Poland (Konarska et al., 

2017). Similarly, stationary CCD cameras using red-green-blue (RGB) representation have been 

commercially available and tested on European breed cattle against) USDA marbling (Gerrard et al., 

1996) and both chemical IMF and MSA marbling in Australia (Stewart et al., 2021). In carcases where 

IMF is not overly high (1–20%) precision tends to not be particularly high (r2 < 0.80; Konarska et al., 

2017; Stewart et al., 2021). Better precision was found in an earlier study (r2 = 0.84), although 

chemical IMF was not measured and a smaller range of subjective marbling score was obtained 

(Gerrard et al., 1996). 

 

1.3.2. Meat authentication 

The authentication of meat refers to the determination of meat products according to the length or 

type of feeding regime such as grass- or grain-fed, geographic origin such as region or country, 

species of pasture or concentrate fed, meat adulteration or substitution such as the mixing with 

cheaper animal products such as offal or horse meat with beef, and the addition of non-meat 

ingredients (Ballin, 2010). Spectroscopic sensors such as NIRS, Raman spectroscopy, and HS imaging 

have been widely researched for such applications in the livestock industries (Esteki et al., 2018; 

Lohumi et al., 2015; Monahan et al., 2018). 

 Studies that scanned materials other that meat with NIRS sensors proposed the use of NIRS 

as an authentication tool. For instance, Dixon and Coates (2009) scanned faecal matter of grazing 

animals to predict stable isotope concentration, which was then able to correctly determine the 

types of forages consumed. Studies on stable isotope content of beef have allowed for successful 

(>80% accuracy) determination of country of origin (Osorio et al., 2011), feeding regime of grass or 

grain (Osorio et al., 2011), or grazing of grass or grass/clover pasture (Moloney et al., 2018). 

Similarly, NIRS scanning of meat has been able to determine the type of pastures or forages 
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consumed by cattle regardless of sample preparation such as pasture/maize silage (Cozzolino et al., 

2002) or barley/blend/maize (Barragán et al., 2021). However, differences in cattle breed and 

genetics within sheep flocks can affect adipose tissue deposition and therefore IMF concentration, 

which can in turn affect the performance of prediction models to authenticate meat products 

(Hitchman et al., 2021; Prieto et al., 2011). Similar differences occur due to feeding regime, 

whereupon grain-fed animals show increased fat deposition and more rapid weight gain than grass-

fed animals (Priolo et al., 2002; Leheska et al., 2008), whereas fat deposition and IMF concentration 

are dependent on the length of time the animals consumed the high-grain diet (Duckett et al., 1993). 

This is not always the case and is often dependent on genotype and metabolites (Connolly et al., 

2019). Furthermore, grass-fed beef is noted for its increased proportion of n-3 fatty acids (Duckett et 

al., 1993; Daley et al., 2010), whereas grain feeding is generally linked to increased palatability and 

more species-specific flavours in beef (Hwang & Joo, 2017) and lamb (Priolo et al., 2002). Two 

important points raised above are the need for handheld NIRS sensors and authentication tools to 

classify meat as grass-fed or grain-fed. Such sensors would provide an objective tool allowing for 

prevention of food fraud and product mislabelling that can be used in food supply chains (Lohumi et 

al., 2015). However, no studies have been published using portable, low-cost smartphone sensors to 

discriminate between grass-fed and grain-fed meat products. Furthermore, automated devices that 

can authenticate meat products at high speed have not been evaluated and multi-sensory platforms 

have the potential to achieve this. 

 Raman spectroscopy has traditionally been used as an authentication tool for detection of 

adulterants in olive oil, fruits, and meats (Lohumi et al., 2015). The ability of Raman spectroscopy as 

a tool to classify beef as grass-fed or grain-fed has been explored successfully in recent publications 

by Logan et al. (2020a; 2020b; 2021a; 2021b). However, the latter studies used only fat as a medium 

for scanning using Raman. Given its success in accurate classification of beef as grass-fed or grain-fed 

based on spectral signature (Table 3), Raman scanning of fat can be used as a baseline for 

comparison when testing the scanning of lean beef tissue, the ability for differentiation of other 



46 
 

species, and the ability for other technologies such as NIRS based on feeding regime. Hyperspectral 

imaging has also been used to detect concentrations of contaminants in mixtures of livestock 

products such as bacteria (Cheng & Sun, 2015), offal (Kamruzzaman et al., 2014), and other species 

(Kamruzzaman et al., 2013; Kamruzzaman et al., 2016) which are known to have different spectral 

signatures. 

 Table 3 shows studies that have used NIRS, Raman spectroscopy, and HS imaging to 

authenticate meat samples and provide an objective point of reference beyond simple product 

labelling. Such measures are necessary to combat food fraud and product mislabelling (Ballin, 2010; 

Esteki et al., 2018). Most of these studies have examined the presence of adulteration in mincemeat 

mixtures, whereupon products sold as minced beef may contain adulterants such as horsemeat, 

pork, trimmings, and offal from other species. One particularly noteworthy study was that from 

Morsy and Sun (2013) who obtained 100% accuracy in adulterant detection in fresh minced beef 

using both PLS-DA and LDA, and accuracy above 75% on frozen samples. Similarly, Dian et al. (2008) 

used vis-NIRS to differentiate grass-fed from grain-fed beef with 98% accuracy. However, these and 

other studies shown in Table 3 used benchtop NIR systems which affected the use of such 

technologies at processor, retailer, and consumer levels. 

 More recently, studies using portable NIRS and Raman sensors have shown promise, though 

not the same accuracy as benchtop systems. Raman spectroscopy of fat was used to discriminate 

grass- and grain-fed beef (several studies by Logan et al.; Table 3). Zając et al. (2014) identified five 

key Raman shifts for differentiating beef meat from horse meat (937, 879, 856, 829, and 480 cm-1). 

Similarly, a further five shifts were found to differentiate grass-fed from grain-fed beef (1658, 1445, 

1301, 1127, and 1069 cm-1) (Logan et al., 2020a). In addition, a portable visible spectrometer was 

able to successfully differentiate grass-fed from grain-fed lamb with accuracy ranging from 80 to 

89% (Dian et al., 2007). Although not truly handheld devices, the use of scanning probes on NIRS 

devices such as the LabSpec and AgriSpec models (from ASD, Inc.) provide the option to scan 
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carcases and cuts of meat in abattoirs, with feeding regime predicted in beef to varying degrees of 

accuracy (25–100%) depending on the feeding type and dataset used (Barragán et al., 2021). These 

findings therefore call for further research for miniaturised NIR devices seen in Table 2 to be 

evaluated as authentication tools. In addition, VIS and NIRS studies by Dian et al. (2007; 2008) and 

Raman spectroscopy studies by Logan et al. (2020a; 2020b) scanned only perirenal and point end 

brisket fat, respectively, and not the lean tissue of carcases or other muscles of commercial 

importance. Lean cuts without testable fat cover are commonly sold in supermarkets and a study 

that uses lean tissue scanning to authenticate the meat using NIR or Raman spectroscopy by feeding 

regime, species, or geographical origin could be of immense value to the meat industry (Ballin, 

2010).
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Table 3. Classification of meat and animal products for human consumption using NIR and Raman spectroscopies. All precision and accuracy metrics are on 

the validation dataset unless indicated otherwise. 

Brand Range Size (L x W x H, 

cm, kg) 

Spectral interval and 

number of scans 

Meat sample Precision and accuracy metrics Reference 

FOSS NIRSystems 6500 400-2500 nm 29.5 x 38.8 x 

54.6, 18.9 kg 

Spectral interval 2 nm 

32 scans per sample 

Intact and 

minced beef 

Maize silage fed (79% accurate) 

Pasture fed (82% accurate) 

Cozzolino et al. 

(2002) 

FOSS NIRSystems 6500 400-2500 nm 29.5 x 38.8 x 

54.6, 18.9 kg 

Spectral interval 2 nm 

30 scans per sample 

Ground beef Friesian or Hereford (79% accurate) 

Muscle classification (90–98% 

accurate) 

Alomar et al. 

(2003) 

FOSS NIRSystems 6500 400-2500 nm 29.5 x 38.8 x 

54.6, 18.9 kg 

Spectral interval 2 nm 

32 scans per sample 

Intact and 

minced beef 

Species classification by PCR (91% 

accurate) 

Species classification by PLS (96% 

accurate) 

Cozzolino and 

Murray (2004) 

Renishaw 2000 Raman 

probe 

100-3000 cm-1 NA Laser 785 nm, 78 mW 

Spectral resolution 0.5-1 

cm-1 

10 s integration x 1 

accumulation x 15 scans 

per sample 

Ground chicken 

and turkey 

breasts and legs 

Classification of muscle and species 

(83% accurate) 

Ellis et al. (2005) 

FOSS NIRSystems 6500 400-2500 nm 29.5 x 38.8 x 

54.6, 18.9 kg 

Spectral interval 2 nm 

3 scans per sample 

Minced lamb fat Classification of grass-fed and 

grain-fed lamb (r2
CV = 0.88, SECV = 

0.17, 98% accuracy) 

Dian et al. 

(2008) 
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Bruker MPA + VERTEX 70 

NIRS 

12500-3750 cm-1 59 x 55 x 38.5, 

30 kg 

Spectral resolution 8 cm-1 

120 scans per sample 

Minced beef 

adulteration 

with turkey 

meat 

Classification into five classes of 

adulteration (71% accurate) 

Alamprese et al. 

(2013) 

FOSS NIRSystems 6500 400-2498 nm 29.5 x 38.8 x 

54.6, 18.9 kg 

Spectral interval 14 nm 

32 scans x 2 locations per 

sample 

Minced beef, 

pork, fat trim 

and offal 

Detection of adulteration in beef 

(pork, fat trimming, offal) at 100% 

accuracy 

Morsy and Sun 

(2013) 

DeltaNu ExamineR Raman 

microscope 

200-2000 cm-1 NA Laser 785 nm, 100 mW 

Spectral resolution 2 cm-1  

Ground beef 

and horse fat 

No overlap in PCA clusters between 

0, 25%, 50%, 75% and 100% 

mixtures 

Detection of horsemeat 

contamination if 25% or more 

Boyacı et al. 

(2014) 

ASD LabSpec 4  350-2500 nm 29.2 x 36.8 x 

12.7, 5.44 kg 

Spectral interval 1 nm 

50 scans x 9 locations per 

sample 

Intact beef Detection of dark cutting (88–95% 

accurate) 

Prieto et al. 

(2014b) 

FOSS NIRSystems 6500 400-2498 nm 29.5 x 38.8 x 

54.6, 18.9 kg 

Spectral resolution 2 nm 

32 scans x 2 locations per 

sample 

Intact and 

minced beef 

Detection of dark cutting (90–91% 

accurate) 

Prieto et al. 

(2014b) 

Renishaw inVia R4 Raman 

microscope 

400-1500 cm-1 111.6 x 93 x 61, 

90 kg 

Laser 785 nm, 6 mW 

Spectral resolution 0.5-1 

cm-1 

10 s integration x 9 

accumulations x 10 scans 

per sample 

Intact chicken, 

beef, turkey, 

mutton, pork 

and horse 

Detection of species (85–95% 

accurate) 

De Biasio et al. 

(2015) 
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DXR SmartRaman 900-1800 cm-1 69 x 97 x 46, 

56.7 kg 

Laser 780 nm, 100 mW 

Sampling interval 2 cm-1 

15 s integration x 20 

accumulations x 3 

locations per sample 

Beefburgers 

made with rusk, 

water and offal 

Detection of offal adulteration (81–

100% accurate) 

Zhao et al. 

(2015) 

Metrohm MIRA 785 400-2300 cm-1 4.53 x 8.82 x 

12.65, 705 g 

Laser 785 nm, 100 mW 

Spectral resolution 8-10 

cm-1 

3 s integration x 5 

accumulations x 3 

locations per sample 

Intact beef fat Accuracy and precision of grass and 

grain discrimination model 96.5% 

Logan et al. 

(2020b) 

Metrohm MIRA 785 400-2300 cm-1 4.53 x 8.82 x 

12.65, 705 g 

Laser 785 nm, 100 mW 

Spectral resolution 8-10 

cm-1 

3 s integration x 5 

accumulations x 3 

locations per sample 

Intact beef fat Long-fed grain feeding (100% 

accuracy, 95% precision) 

Short-fed grain feeding (93% 

accuracy and precision) 

Supplement and grass feeding 

(95% accuracy and precision) 

Grass only feeding (90% accuracy, 

93% precision) 

Logan et al. 

(2021a) 

Metrohm MIRA 785 400-2300 cm-1 4.53 x 8.82 x 

12.65, 705 g 

Laser 785 nm, 100 mW 

Spectral resolution 8-10 

cm-1 

Intact beef fat Long-fed grain feeding (98% 

accuracy, 100% precision) 

Short-fed grain feeding (91.1% 

accuracy, 86% precision) 

Logan et al. 

(2021b) 
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3 s integration x 5 

accumulations x 3 

locations per sample 

Supplement and grass feeding 

(92.1% accuracy, 82% precision) 

Grass only feeding (93.1% 

accuracy, 77% precision) 

ASD LabSpec 4 350-2500 nm 29.2 x 36.8 x 

12.7, 5.44 kg 

Spectral interval 1 nm 

50 scans x 4 tissues per 

sample 

Intact beef Barley feeding (44–100% accurate) 

Corn feeding (56–88% accurate) 

Blend feeding (25–38% accurate) 

Barragán et al. 

(2021) 

r2
CV – coefficient of determination of cross-validation; SECV - standard error of cross-validation; PCA – principal components analysis.  
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1.3.3. Livestock product safety 

Following a comprehensive review of research papers, it was determined that almost no studies 

have used line scanning to determine the health status or defects of different organs, carcases or 

meat products. However, review articles summarising studies from the past two decades have 

heralded automation in the meat processing industry for health and safety hazard detection (Uzal et 

al., 2002; Webber et al., 2012). The majority of line scanning in this area has instead focused on live 

animals prior to slaughter (Ezanno et al., 2021; Neethirajan et al., 2017). One such area that has 

been proposed for automation has been the inspection of offal for evidence of animal diseases, 

where non-contact line scanning sensor technology could potentially prevent spread of potential 

zoonotic diseases (Samuel et al., 1980). The organs identified for inspection using automatic sensors 

were parenchymatous, known to be the most commonly condemned organs including hearts, lungs, 

livers, and kidneys (Cook & Anderson, 2017). The most commonly detected lesions causing rejection 

in the abattoir were presented by the Agriculture and Horticulture Development Board (AHDB, 

2017). 

 AgResearch (2018) proposed the use of multi-sensory platforms to provide full examination 

of offal for both identification of the type and inspection of the health status. For instance, HS 

imaging of a selection of condemned organs was able to identify regions of cirrhosis in the liver, 

abnormal biomass such as cysts and abscesses in the liver, pneumonia, nephritis, and lesions 

compatible with Cysticercus ovis infection in the heart. However, cysts and abscesses were not 

identified 100% of the time, and diseases such as peritonitis and lung pleurisy were not easily 

identified. Dual-energy X-ray attenuation was able to identify cysts from liver cirrhosis and fluke 

worm (AgResearch, 2018). Cook and Anderson (2017) used CT to provide information on animal 

health status by scanning viscera, although this was a preliminary exploration. This latter study 

found that liver fluke, interstitial nephritis, and discolouration in the heart were not clearly detected 

by CT, although it was mentioned by the authors that augmentation with other sensing technology 

would have improved the results. It is hypothesised that sensors that can measure discolouration 
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and detect defects such as parasites in other agricultural products such as HS imaging may have the 

ability to detect these defects in offal (Elmasry et al., 2012a; Xu & Sun, 2017), but no scientific 

evidence exists to demonstrate this. However, detection using CT would be achievable for 

abnormalities presenting differences in fluid content such as cysts, abscesses and eggs from 

parasites such as tapeworm (Cook & Anderson, 2017). It is worth noting that these were pilot 

studies that were not published in peer-reviewed journals and their findings are to be considered as 

preliminary. Computed tomography (CT) has been used successfully to identify lesions on organs in a 

veterinary medicine context, although these studies scanned sedated live animals (Lee et al., 2009; 

Lee et al., 2011). 

 Hyperspectral imaging has not been used to differentiate organs in the abattoir, nor has it 

been used to identify transmissible health risks. It is believed that multi-sensory systems similar to 

those used previously in meat studies (Dixit et al., 2021; Hitchman et al., 2021) could provide insight 

into the spectral signatures of different organ types and identify spectral differences between 

healthy and unhealthy organs or tissues. This was seen in a prior study using HS to differentiate 

organs by spectral signature during exploratory surgery on a pig (Akbari et al., 2008). Once 

algorithms are developed for identification and disease detection purposes, multi-sensory systems 

can allow for automation in the offal sortation process in the meat industry and be distributed in 

abattoirs. 

 Hyperspectral sensors have also been used in line scanning systems to detect contamination 

and a range of defects related to product safety and health of slaughtered animals. For example, HS 

imaging has been used successfully in conjunction with PLSR and least squares support vector 

machines to estimate the total viable count of bacteria from spectra acquired within selected ROI of 

fish fillets where traditional plating measurement occurred (Cheng & Sun, 2015). Similarly, skin 

tumours in chicken carcases were identified using discriminant analysis with error rates <6% 

(Nakariyakul & Casasent, 2009).  
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1.4. Factors affecting the accuracy of predictions 

Multiple factors can affect the accuracy of predictions from NIRS, Raman spectroscopy and HS 

imaging including the spectral range, spectral resolution or interval, number of scans per sample, 

sample presentation, and modelling method (Ben-Gera & Norris, 1968; Huang et al., 2014a; Prieto et 

al., 2017; Xu et al., 2020). Therefore, these factors were included in the tables to summarise and 

understand the differences between different spectroscopy systems used in previous studies. In 

addition, day-to-day variation has been mentioned to be a problem, particularly in smaller 

spectrometers (Dixit et al., 2020). These have been attributed to variations in temperature, 

humidity, dust, and other environmental factors (Williams et al., 2017). 

 Data pre-processing methods such as log(1/R), first and second derivatives, among others, 

can also have a large influence on the results (Huang et al., 2010; Zeaiter et al., 2005). Furthermore, 

it is important to note that the precision and accuracy of predictions could be presented in the 

literature for the calibration or model development dataset, for the resampling or cross-validation 

dataset, or for a set-aside or independent validation dataset. The best approach is to have a set-

aside dataset for validation (often 15–40% of the total sample size), although this is not always 

possible due to smaller sample sizes (Dixit et al., 2017; Zeaiter et al., 2005). Resampling or cross-

validation is frequently used when sample size is below 150 and various cross-validation methods 

including leave-one-out or k-fold are required (Dixit et al., 2017; Williams et al., 2017). Some studies 

have employed all three datasets, where k-fold cross-validation was used to prevent overfitting of 

calibration models, and a validation dataset was used to test the developed models (Balage et al., 

2015; Dixit et al., 2020; Dixit et al., 2021; Kamruzzaman et al., 2012a). 

 These factors are limitations for comparing results from different studies and call for the 

development of a standard procedure for sample and data processing in meat science. In addition, 

more research is required to compare different sample and data processing methods. However, 

sample presentation could present challenges as it depends on the variable being predicted such as 
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pH or marbling score in intact meat or chemical crude protein or fat content in dried and ground 

meat. The use of NIRS, Raman and HS models on intact meat is desired due to this being their most 

common presentation at processor, retailer and consumer level. Similar to handheld devices, this is 

the most practical solution for the industry. 

 

1.4.1. Spectral range, spectral resolution, and practicality 

Comparison is essential to the trialling of new technology, with handheld NIRS sensors rarely used in 

literature (Table 2) compared to vis-NIRS benchtop sensors (Table 1). Traditionally, shorter 

wavelength ranges have limited the prediction accuracy of sensors. For instance, the use of vis-NIR 

(400–2500 nm) outperformed visible-only (400–700 nm) spectroscopy (r2
CV = 0.88 vs. 0.68, correct 

classification 98% vs. 90%) in the discrimination of grass-fed and grain-fed lamb when homogenised 

perirenal fat was scanned (Dian et al., 2008). 

 Several benchtop vis-NIRS sensors have been deemed as “portable” with the addition of a 

scanning probe, although these still require a trolley, mains power, and computer connection to be 

used for on-line measures on carcases in an abattoir (De Marchi, 2013; Patel et al., 2021; Pullanagari 

et al., 2015). Accuracy and precision of chemical composition tends to be lower in handheld sensors 

compared to benchtop sensors (Dixit et al., 2017), although their low cost, lightweight nature, and 

ease of use upon entire cuts of meat make these more attractive to consumers (Teixeira dos Santos 

et al., 2013). Even less studies have used smartphone connectable sensors, which are billed as 

“palm-sized”, “mini”, or “micro” NIRS (Dixit et al., 2020; Goi et al., 2022; Patel et al., 2021; Pham et 

al., 2018). Such devices are marketed to consumers, and despite having shorter wavelength ranges 

than larger vis-NIRS sensors (900–1700 nm compared to 350–2500 nm), their accuracy has been 

deemed to be suitable for “rough screening” in the abattoir or by consumers and retailers (Goi et al., 

2022). 
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 The use of “rough screening” procedures in the abattoir (Williams, 2001) allows meat cuts to 

be sorted into groups, e.g., based on tenderness (Shackelford et al., 2005) or colour (Prieto et al., 

2014b), which are very important traits for consumer selection. Similarly, the use of NIRS as an 

objective grading system of IMF, may allow for quality grading based on chemical IMF prediction to 

take place using a handheld sensor, as proposed by Bindon (2004), which is not the case for 

subjective marbling score grading (Savell et al., 1986). Despite these assertions, few studies have 

attempted comparisons of handheld sensors connecting to a smartphone with benchtop NIRS 

sensors for chemical parameters. 

 

1.4.2. Sample preparation and product type 

Prediction of chemical parameters has been found to be more precise in minced and freeze-dried-

ground meat compared to intact meat (Table 1). This occurs due to the homogenisation of samples 

following mincing and further following freeze-drying and grinding, which is a requirement of sample 

preparation in the laboratory for the AOAC Soxhlet (IMF) and Kjeldahl (crude protein) analyses 

(Helrich, 1990). The use of inhomogeneous media such as FI meat affects the spectra and thus the 

accuracy of prediction models in comparison to more homogenous material such as minced or dried 

and ground meat, because vibrations can be obtained from different tissue types simultaneously 

(Delpy & Cope, 1997). This can be seen in previous studies where chemical content predictions on 

intact meat can be very promising with r2 > 0.60 and often exceeding 0.8 (Kamruzzaman et al., 

2012a; Sun et al., 2011; Yang et al., 2010). However, scanning of unprocessed meat cuts is still rare 

(Table 1; Table 2) and predictions generally fall below the required levels of precision and accuracy 

required for use in the industry (Williams, 2001). For instance, Cozzolino and Murray (2002) found 

CP and moisture predictions to have significantly lower precision in intact meat compared to minced 

meat, although limited differences were seen in IMF predictions. However, some of the smaller 

handheld sensors have been developed for use by consumers and retailers, and their use requires 

intact samples (Goi et al., 2022; Patel et al., 2021). 



57 
 

 Originally, all NIR predictions of chemical composition took place on benchtop devices using 

homogenised samples in a small sample cup. For instance, Ben-Gera and Norris (1968) used only 2 g 

of sample in a 2 mm cup, while more modern studies have filled cups with diameter 50–70 mm and 

depth 10–25 mm with meat paste (Cozzolino et al., 2000; Su et al., 2014). Larger homogenised 

samples (150 g) have been used in 165 x 35 mm cuvettes (Alomar et al., 2003), whereas intact 

samples were scanned at dimensions up to 100 x 50 x 25 mm (Barlocco et al., 2006). This is a small 

sample of an experimental unit such as a steak, primal cut of muscle, or an entire animal. Similarly, a 

larger aperture size, or field of view area, of a sensor allows data from a larger portion of the sample 

to be captured, and this is rarely mentioned in NIRS studies although it is regularly measured in 

colorimetry studies (Holman et al., 2015). Measurement probes for benchtop NIRS ranging in 

aperture size from 2 to 55 mm (Shackelford et al., 2004) and 2.5 to 10 mm for handheld NIRS devices 

(Dixit et al., 2020) have allowed for the scanning of intact meat which allows the IMF concentration 

of a sample to be estimated on-line. Dixit et al. (2020) mentioned that the handheld sensor with a 

smaller viewed area produced a lower signal to noise ratio. The majority of benchtop NIRS systems 

scan the sample multiple times prior to obtaining the average spectra of a sample. The NIRS used by 

Lanza (1983) scanned a sample 50 times, with 5 scans per second, totalling 10 seconds of scanning, 

whereas ASD spectrometers have noted a 5 s time for a reading encompassing 50 scans using a 

probe (Barragán et al., 2021; Prieto et al., 2014b). Conversely, Dixit et al. (2021) noted a 7 s time per 

scan. 

 Devices that do not require contact with the samples are preferred for applications in the 

meat supply chain. Non-contact NIRS systems have also been configured in the form of line scanners 

with a conveyor belt, for example Dixit et al. (2021) collected spectra (100 mm area) from a 180 mm 

stand-off distance. Similarly, Goi et al. (2022) collected spectra from meat using a handheld NIRS 

held at a distance of 10 mm from the sample surface. 

 Similarly, collection of broader ranges of samples, such as more muscles and species, tend to 

improve precision and accuracy of NIRS prediction models, which also occurs in traits with greater 
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variation. This tends to result in greater precision and accuracy of IMF prediction models compared 

to chemical constituents with low variation between samples such as pH and CP (De Marchi et al., 

2013). Prevolnik et al. (2010) found that using multiple muscles from pigs gave greater precision (r2
val 

= 0.96) and accuracy (RPD = 4.5) to predict CP compared to only the longissimus dorsi (r2
val = 0.11, 

RPD = 1.1). In the same study, use of different meat products significantly increased the precision 

and accuracy for moisture prediction, whereas IMF showed r2
val > 0.90 and RPD > 4.0 regardless of 

muscle or species. 

 

1.4.3. Methods for data processing and analysis 

Pre-processing of NIR and HS data is necessary in almost all cases. Spectra are often cleaned to 

remove outliers and extreme values (outside confidence interval on a T2 or Q residual plot) using 

principal components analysis (PCA) prior to analysis (Dixit et al., 2021; Hitchman et al., 2021) or 

predicted values more than 2.5 standard error from reference values (Andueza et al., 2019; Goi et 

al., 2022). The Lambert-Beer Law is commonly used to convert reflectance data recorded by the 

spectrometer to absorbance data by the equation absorbance = log(1/reflectance) due to the linear 

relationship between absorbance and concentration of the absorber (Norris et al., 1976), which is 

then predicted by multivariate calibration (Zeaiter et al., 2005). Further pre-processing of the spectra 

such as the calculation of the first or second derivative reduces multiplicative effects from the 

background and capture variations in the slope, respectively, and thereby may improve the accuracy 

and precision in most cases (Lanza, 1983). Spectral data can also be smoothed using combinations of 

Savitzky-Golay filters (Savitzky & Golay, 1964), Fourier transformation (Zeaiter et al., 2005), 

multiplicative scatter correction (Liao et al., 2010), standard normal variate (SNV) and detrend 

(Barnes et al., 1989). However, there are some studies where accuracy and precision are greater 

when no pre-processing methods are used (Kamruzzaman et al., 2015). 
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 Multivariate calibration or model development methods include partial least squares 

regression (PLSR), PCA, and multiple linear regression. Of these, PLSR is dominant in meat science 

research on quality and chemical composition using NIRS (Dixit et al., 2017; Prieto et al., 2017), 

Raman spectroscopy (Fowler et al., 2017; Xu et al., 2020), and HS (Kamruzzaman et al., 2012b; Wang 

& Peng, 2018). The combination of PLSR with linear discriminant analysis (LDA), known as partial 

least squares discriminant analysis (PLS-DA) dominates classification studies in meat and agricultural 

product research (Ariana & Lu, 2010; Huang et al., 2014a). For HS imaging, more accurate results 

have been found when using it as a classification tool in discriminant analysis compared to 

prediction by linear regression (Huang et al., 2014a), for example PLS-DA modelling for beef in 

tenderness categories (Konda Naganathan et al., 2008). Conversely, Raman spectroscopy has mostly 

used PCA and hierarchical cluster analysis when it is used as a discrimination tool (Boyacı et al., 

2014; Logan et al., 2020b; Xu et al., 2020). 

 Decision tree machine learning algorithm methods such as classification and regression trees 

(CART) and Cubist have been used in NIRS soil chemistry and quality analyses (Minasny & 

McBratney, 2008; Wadoux et al., 2021), although have not been used in meat studies. Tang et al. 

(2020) found that Cubist models outperformed PLSR in terms of precision in soil chemical properties. 

Similarly, the random forest (RF) method, an extension of decision trees, is known for its ability to 

achieve high accuracy on large datasets (Liaw & Weiner, 2002). Despite this, RF has been sparsely 

used in classification studies (Huang et al., 2014a; Minasny & McBratney, 2008), although in one 

study RF showed greater accuracy for rice cultivar classification compared to PLS-DA (Kong et al., 

2013). 

 Williams et al. (2017) stated that the optimal NIRS prediction model is based on the highest 

correlation coefficient (r) or coefficient of determination (R2), lowest standard error of cross-

validation (SECV), lowest RMSE, and highest RPD. The use of the R2 value on both calibration and 

validation (external or cross-validation) datasets allows for precision of the prediction models to be 



60 
 

determined, whereas Lin’s concordance correlation coefficient, RPD, bias and SE values determine 

accuracy (Tedeschi, 2006). The RPD value can also be used to determine suitability of a given 

prediction model and NIR system to the meat or agricultural industry (Williams, 2014). Calibration 

equations developed from PLSR, or other statistical methods can then be used for predictions on 

future samples, provided these metrics are sufficiently high on both calibration and on independent 

set-aside or cross-validation datasets (Williams, 2014; Williams et al., 2017; Williams et al., 2019). 

However, sample sizes are often a concern when drawing conclusions because small sizes may lack 

the appropriate variance compared to the ranges expected on future samples. This can therefore 

affect the suitability of many devices and models for applications in the industry. Consequently, the 

RPD for most NIRS meat science projects falls between 2.0 and 2.4 which gives suitability for rough 

screening, such as classification in the abattoir or at retail level. An RPD value less than 2.0 is 

insufficient for prediction or classification, while above 3.0 is required for quality or process control 

in industry (Williams, 2001; Williams, 2014). 

 In classification studies employing PLS-DA, LDA, or RF (Kuhn, 2020); sensitivity refers to the 

proportion of true positives for a given positive class, specificity to the proportion of true negatives 

for a given positive class, precision (or, positive predictive value) to the proportion of true positives 

divided by marked positives, and accuracy (balanced accuracy) to the arithmetic mean of sensitivity 

and specificity. Overall accuracy of a dataset or table is the mean of the sensitivities of all classes. 

 

1.5. Real-time line scanning in the meat industry 

It is imperative that future development of spectral sensors in the meat industry focuses towards in-

line scanning of meat and meat products. The non-contact nature of these sensors provides a safer 

alternative to handheld sensors in their ability to be installed in pilot plants prior to 

commercialisation in the industry and not allow for any cross-contamination. Furthermore, larger 
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systems have the ability to act as multi-sensory platforms whereupon HS imaging can take place 

along with other types of imaging including NIRS (Dixit et al., 2021) or X-ray (AgResearch, 2018). 

Early adoptions of conveyor belt technology for in-line scanning to predict chemical composition 

measured vis-NIRS light reflection from ground beef every 1/30 s (Anderson & Walker, 2003). 

However, the latter study only predicted fat concentration and was considered unable to scan non-

uniform surfaces (Dixit et al., 2016; Dixit et al., 2017). Positive results have been reported for non-

contact vis-NIRS moisture prediction in intact coalfish using NIR transflectance spectra (r2
CV = 0.77–

0.79), with moderate prediction using non-contact NIRS (r2
CV = 0.55) (Wold et al., 2006). Similarly, 

prediction of pH in intact pork using an optoelectronic sensor showed high accuracy, with other 

predictions considered as reasonable (Liao et al., 2010). The use of beam splitting was found to 

improve the accuracy of predictions in minced beef when scanned at distances of 10.15 and 4.0 mm 

(Dixit et al., 2016). Multipoint NIR analysis employs the spectra from several pixels to be analysed to 

improve the accuracy of predictions compared to contact NIRS probes (Dixit et al., 2017). 

 As mentioned in the previous section (3.2), several HS imaging systems have been used 

successfully to determine contents of offal, or the presence of different species within minced meat 

mixtures (Table 4). These studies have shown that automation within the meat industry is possible 

and that such technologies could provide value and increase profits associated with reduced labour 

requirements in the long run (Dixit et al., 2017). Table 4 shows that, when presented, RPD values 

tend to be 3 or greater in line scanning systems, indicating the ability of the models to be used in 

industry for screening or even quality control purposes (Williams, 2014). These have been 

particularly high for detection of adulterants or contamination within minced meat. The very high 

accuracy for discrimination studies also shows the promise for HS systems, although in many cases 

more samples are required prior to deployment in the industry.  
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Table 4. Studies with on-line scanning of animal and meat products using different technologies such as NIRS and HS imaging. 

Brand Wavelength 

range 

Spectral resolution, scan 

distance and number of 

scans 

Meat sample Precision and accuracy metrics Reference 

Perten DA-7000 NIR 900-1900 nm Spatial resolution 3.3 cm 

Scan distance 12.2 cm 

Homogenised 

beef 

Fat (r2
val = 0.83–0.93, SEval = 2.15–2.28) Anderson and Walker 

(2003) 

TiTech Visionsort AS 

NIR 

760-1040 nm Spectral resolution 20 nm 

Spatial resolution 0.05 

mm 

Scan distance 1-5 cm 

Intact and 

homogenised 

fish 

Moisture (r2
CV = 0.55–0.94, RMSECV = 0.6–1.9) Wold et al. (2006) 

Imperx IPX-2M30 HS 400-1000 nm Spectral resolution 2.8 nm 

Spatial resolution 1600 x 

1200 px 

Region of interest 200 x 

600 px 

Intact beef Classification of steaks into tenderness 

categories (93.7% accurate) 

Konda Naganathan et al. 

(2008) 

Specim ImSpector V9 

HS 

447.3-951.2 nm CCD camera 512 x 512 px 

Spectral resolution 10 nm 

Spatial resolution 1 nm 

Region of interest 

threshold 16 x 16 px  

Entire chicken 

carcases 

Detection of tumours (67.5-80% accurate) Nakariyakul and Casasent 

(2009) 
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Ocean Optics 

USB4000-VIS-NIR 

450-910 nm Integration time 5 ms 

Scan distance 5 cm 

3 scans per sample 

Intact pork Moisture (r2
val = 0.79, RMSEval = 0.77) 

Fat (r2
val = 0.77, RMSEval = 0.09) 

Protein (r2
val = 0.76, RMSEval = 0.41) 

pH (r2
val = 0.82, RMSEval = 0.10) 

Liao et al. (2010) 

Specim ImSpector 

N17E HS 

890-1750 nm Spectral resolution 6 nm 

Spatial resolution 0.58 

mm/pixel, 320 x 256 px 

2 scans per sample 

Intact lamb Moisture (r2
val = 0.84–0.88, SEval = 0.51–0.57, 

RPDval = 2.35–2.63, r2
CV = 0.86–0.91, SECV = 

0.42–0.52, RPDCV = 2.62–3.24) 

Protein (r2
val = 0.63, SEval = 0.34, RPDval = 1.71, 

R2
CV = 0.67, SECV = 0.33, RPDCV = 1.73) 

Fat (r2
val = 0.87–0.98, SEval = 0.35–0.40, RPDval 

= 3.20–3.66, r2
CV = 0.90–0.91, SECV = 0.35–

0.37, RPDCV = 3.70–3.91) 

pH (r2
CV = 0.65, RMSECV = 0.09, RPD = 1.76) 

Kamruzzaman et al. 

(2012a, b) 

Specim ImSpector 

N17E HS 

910-1700 nm Spectral resolution 6 nm 

Spatial resolution 0.58 

mm/pixel, 320 x 256 (0.06 

mm/px) 

Sampling interval 3.34 nm 

Minced lamb 

and pork 

Detection of pork in lamb meat (r2
CV = 0.98–

0.99, RMSECV = 1.42–1.45, RPD = 8.04–8.21) 

Kamruzzaman et al. 

(2013) 

Headwall Photonics HS 

spectrograph 

940-1650 nm Spectral resolution 4.8 nm Intact pork Pork marbling score (rval = 0.77–0.90, RMSEval 

= 0.52–0.65) 

Huang et al. (2014b) 

Specim ImSpector 

N17E HS 

910-1700 nm Spectral resolution 6 nm Minced lamb 

and offal 

Detection of offal in minced lamb (r2
CV = 0.97, 

RMSECV = 1.80–1.84) 

Kamruzzaman et al. 

(2014) 
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Spatial resolution 0.58 

mm/pixel, 320 x 256 (0.06 

mm/px) 

Sampling interval 3.34 nm 

Specim ImSpector 

V10E HS 

400-1000 nm Spectral resolution 2.8 nm 

Spatial resolution 1004 x 

1002 px 

Sampling interval 1.58 nm 

1 scan per sample 

Intact carp Detection of total viable counts of bacteria 

(r2
CV = 0.90–0.93, RMSECV = 0.48–0.59, r2

val = 

0.90–0.93, RMSEval = 0.49–0.57, RPD = 3.13–

3.89) 

Cheng and Sun (2015) 

Texas Instruments 

MC1002PF camera + 

V10C ImSpector HS 

400-1000 nm Sampling interval 5 nm 

Exposure time 9.4 ms 

Minced beef 

and horsemeat 

Detection of horsemeat in beef (r2
CV = 0.99, 

SECV = 1.56, r2
val = 0.98, SEval = 2.23) 

Kamruzzaman et al. 

(2015) 

VideometerLab HS 405-970 nm 18 NIR wavelengths used 

to acquire multispectral 

images 

Minced beef 

and pork 

Detection of pork and beef (95% accurate) 

Detection of adulterants in pork and beef 

(89% accurate) 

Ropodi et al. (2015) 

Innopharma Labs NIR 

spectrometer 

1515-2100 nm Scan interval 5 nm 

Speed 100-210 rpm 

Scan distance 1-4 cm 

1 scan (5 regions) per 

sample 

Minced beef Moisture (r2
val = 0.94–0.98, RMSEval = 2.75–

4.62) 

Fat (r2
val = 0.95–0.99, RMSEval = 2.79–5.67) 

Protein (r2
val = 0.90–0.95, RMSEval = 1.56–2.28) 

Ash (r2
val = 0.95–0.99, RMSEval = 0.03–0.06) 

Dixit et al. (2016) 

Texas Instruments 

MC1002PF camera + 

400-1000 nm Sampling interval 5 nm 

Exposure time 9.4 ms 

Minced beef 

and chicken 

Detection of chicken in beef (r2
val = 0.96, 

RMSEval = 1.79–3.18, RPD = 4.81–8.54) 

Kamruzzaman et al. 

(2016) 
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Specim ImSpector 

V10C HS 

Xenics XEVA 1.7-320 + 

VIS InGaAs HS camera 

550-1700 nm Spectral resolution 5 nm 

Spatial resolution 320 x 

150 px 

Write speed 25 frames/s 

Scan distance 37 cm 

Intact beef IMF (r2
val = 0.48, RMSE = 0.54, bias = -0.57) 

pH (r2
val = 0.20, RMSE = 0.08, bias = 0.64) 

Craigie et al. (2017) 

Allied-Vision 

Technology GX1660 

CMOS HS 

400-1000 nm Spectral resolution 8 nm Intact beef Marbling score of beef (rval = 0.95, SEval = 0.3) Aredo et al. (2017) 

ASD LabSpec 4 Hi-Res 

NIR 

350-2500 nm Spectral resolution 3-10 

nm 

Sampling interval 1.4-2 

nm 

Scan time 7 s 

Intact beef IMF (r2
CV = 0.91, SECV = 1.02, r2

val = 0.89, SEval = 

1.12, bias = 0.02, RPD = 2.97) 

pH (r2
CV = 0.87, SECV = 0.17, r2

val = 0.86, SEval = 

0.18, bias = 0.01, RPD = 2.72) 

Dixit et al. (2021) 

Hyperspec EVNIR + VIS 

InGaAs HS camera 

550-1700 nm Spectral resolution 5 nm 

Spatial resolution 320 x 

150 px 

Write speed 25 frames/s 

Scan distance 37 cm 

Intact beef IMF (r2
CV = 0.92, SECV = 0.98, r2

val = 0.90, SEval = 

1.06, bias = 0.85, RPD = 3.13) 

pH (r2
CV = 0.91, SECV = 0.15, r2

val = 0.89, SEval = 

0.16, bias = 0.91, RPD = 3.08) 

Dixit et al. (2021) 

Multi-camera system 

(VIS and VIS-NIRS HS) 

470-630 nm and 

670-950 nm 

Spectral resolution 10 nm Intact beef IMF (r2
CV = 0.29–0.82, SECV = 1.39–2.94, r2

val = 

0.44–0.72, SEval = 1.76–2.47, bias = -0.03—

0.26, RPD = 1.34–1.88) 

Dixit et al. (2021) 
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Spatial resolution 512 x 

256 px (Vis) and 409 x 216 

px (Vis-NIR) 

Write speed 7 frames/s 

Scan distance 20 cm 

pH (r2
CV = 0.75–0.84, SECV = 0.20–0.25, r2

val = 

0.75–0.77, SEval = 0.23–0.24, bias = -0.03–0.04, 

RPD = 1.98–2.07) 

r2
CV – coefficient of determination of cross-validation; r2

val – coefficient of determination on the validation dataset; RMSECV – root mean square error of cross-

validation; RMSEval – root mean square error on the set-aside validation dataset; SECV - standard error of cross-validation; SEval – standard error on the set-aside 

validation dataset; RPD – residual prediction deviation; IMF – intramuscular fat. 

Note: Fat and IMF are used interchangeably as they are dependent on their mention in the original study. 
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1.6. Conclusions and Hypothesis 

1.6.1. Conclusions 
Following a comprehensive review of the literature available for spectroscopic devices in the meat 

industry, several paucities were identified in the literature. These include, but are not limited to: 

- Use of alternative modelling approaches other than partial least squares (i.e., PLSR, PLS-DA) 

for both prediction of chemical composition and discrimination. 

- Use of handheld NIRS devices that connect to smartphones via Bluetooth for the prediction 

of meat quality and chemical composition. 

- Use of the above devices and modelling approaches for the discrimination of meat based on 

feeding regime (grass-fed and grain-fed). 

- Use of the above devices and modelling approaches for the prediction of DOF of a high-grain 

diet and visual marbling score using NIRS or Raman spectroscopy. 

- Use of novel multi-sensory platforms and different modelling approaches for the 

identification of organs using line scanning tools in the abattoir. 

- Use of novel multi-sensory platforms and modelling approaches for the discrimination of 

organs based on presence of defects or diseases in the abattoir, and whether diseased tissue 

differs in spectral signature. 

To explore these paucities, the present thesis comprises the following experimental chapters: 

 Chapter 2: Use of a palm-sized NIR spectrometer (NIRvascan Nano) with Bluetooth 

connection to a smartphone application (NIRScan Nano) to evaluate chemical composition 

(moisture, protein, IMF and pH) of beef and lamb cuts from retail outlets. The resulting absorbance 

spectra were compared with those from a larger benchtop NIR spectrometer employing a scanning 

probe (ASD AgriSpec) for their ability to predict chemical composition and meat quality measured as 
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per previous methods (Coombs et al., 2017; Helrich, 1990; Mehnaz et al., 2019; MLA, 2017a). 

Chemical composition results at different sample presentations are presented in Chapter 2. 

 Chapter 3: Use of a palm-sized NIR spectrometer (NIRvascan) and Raman spectrometer 

(Bruker Bravo) to discriminate grass-fed and grain-fed status of beef cuts (including days on grain 

feed). The absorbance spectra from both devices were compared with each other for their 

predictions of feeding regime, MSA marbling score (as per MLA, 2017a), and DOF. 

 Chapter 4: Use of a prototype multi-sensory platform encompassing two HS sensors (visible 

and short-wave infrared) to identify parenchymatous organs (hearts, kidneys, livers, and lungs) from 

sheep and cattle from their spectral signatures. 

 Chapter 5: Use of a prototype multi-sensory platform encompassing two HS sensors (visible 

and short-wave infrared) to discriminate organs with defects and diseases based on acceptance or 

rejection from the abattoir sortation process, later confirmed by veterinary pathology. This 

technology was trialled for the purpose of automating the organ sortation process in the abattoir. 

1.6.2. Hypothesis 

The hypothesis of the present thesis was that novel spectroscopic devices can be used in the meat 

industry for prediction of chemical composition and discrimination of feeding regime at a consumer 

and retail levels, organ identification for the purposes of automatic organ sortation by type, and 

detection of defects and disease in livestock organs. The objective was to evaluate these novel 

devices and develop data analysis procedures to provide reliable, cost effective, and accurate 

alternatives within the meat industry as alternatives to the current methods of subjective carcase 

grading, external chemical analysis, trust in product labelling, and manual sortation and inspection of 

offal. 
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2. Comparison of smartphone and lab-grade NIR spectrometers to 

measure chemical composition of lamb and beef 

Published in Animal Production Science 61: 1723-1733. 

Abstract. Near-infrared reflectance spectroscopy (NIRS) has been extensively investigated for non-

destructive and rapid determination of pH and chemical composition of meat including water, crude 

protein, intramuscular fat (IMF) and stable isotopes. Smaller, cheaper NIRS sensors that connect to a 

smartphone could enhance the accessibility and uptake of this technology by consumers. However, 

the limited wavelength range of these sensors could restrict the accuracy of predictions compared to 

benchtop laboratory NIRS models. This chapter aimed to compare the precision and accuracy metrics 

of predicting pH, water, crude protein and IMF of three sample presentations and two sensors. Fresh 

intact (FI) store-bought beef and lamb steak samples (n = 43) were ground and freeze-dried (FD), and 

then oven-dried to create freeze-dried oven-dried (FDOD) samples. All three forms of sample 

presentation (FI, FD, FDOD) were scanned using the smartphone and benchtop NIRS sensors. The IMF 

was the best predicted trait in FD and FDOD forms by the smartphone NIRS (R2 > 0.75; RPD > 1.40), 

with limited differences between the two sensors. However, predictions on FI meat were poorer for 

all traits regardless of the NIRS scanner used (R2 ≤ 0.67; RPD ≤ 1.58) and not suitable for use in research 

or industry. The smartphone NIRS sensor showed accuracy and precision comparable to benchtop 

NIRS to predict meat composition. However, these preliminary results found that neither of the two 

sensors reliably predicted quality attributes for industry or consumer applications. Miniaturised NIRS 

sensors connected to smartphones could provide a practical solution to measure some meat quality 

attributes such as IMF, but the accuracy depends on sample presentation. 
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2.1. Introduction 

 Research has shown that consumers worldwide are willing to pay a premium for meat with 

high eating and nutritional quality, particularly in developed countries (Pethick et al., 2018; 

Polkinghorne & Thompson, 2010). Conventional measures of meat quality include, but are not limited 

to, colour of muscle and fat, pH, and marbling (AUS-MEAT, 2018) and chemical composition (Prieto et 

al., 2017). The issue with conventional meat grading procedures is that they are subjective, with the 

drive for on-line instrumental assessment providing the potential for a global system of objective 

carcase classification (Polkinghorne & Thompson, 2010). Chemical composition (fat, protein and water 

contents) is accurate and objective but measured in laboratories using wet chemistry methods which 

are invasive, destructive, expensive and time consuming due to the requirements of sample 

preparation and instrumentation (Elmasry et al., 2012a; Teixeira dos Santos et al., 2013). Therefore, 

both methods of measuring meat quality are not suitable for use by consumers or retailers and there 

is a need to develop consumer grade technologies to predict meat quality. 

 As a result, several scanning technologies have been developed to measure such quality traits 

in an accurate, objective and non-destructive manner. However, these are limited by their large size, 

lack of portability and high installation costs (Scholz et al., 2015). Near-infrared reflectance 

spectroscopy (NIRS) has been used extensively in research to predict eating and nutritional quality of 

meat and meat products (Dixit et al., 2017; Prieto et al., 2017; Qiao et al., 2015). However, prediction 

of meat quality and chemical composition by NIRS has been done to varied levels of precision and 

accuracy, as previously reviewed (Prevolnik et al., 2004; Prieto et al., 2009; Prieto et al., 2017). 

 The development of smaller, cheaper, and more portable NIRS scanners has provided the 

opportunity for multiple scans of the surface of heterogeneous fresh meat samples that could increase 

its accuracy of predictions (Teixeira dos Santos et al., 2013; Dixit et al., 2020). Despite these advances, 

research into the use of miniaturised, consumer grade NIR spectrometers for prediction of quality 

traits has not been extensive. Accuracy and precision have been generally inferior with miniaturised 
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NIR spectrometers due to the shorter wavelength range (900–1700 nm) compared to benchtop lab-

grade NIRS (LG-NIRS) that include the visible spectrum and further into the NIR (350–2500 nm) (vis-

NIRS; De Marchi, 2013). Recent on-line predictions using the latter device on FI meat have yielded 

promising results, particularly for chemical analyses (Cozzolino & Murray, 2002; Prieto et al., 2011; 

Pullanagari et al., 2015). Recent studies using the NIRS with shorter wavelength have found results 

comparable to benchtop NIRS to measure soil quality (Tang et al., 2020) and intramuscular fat (IMF) 

in beef (Pham et al., 2018; Sun et al., 2011). However, Dixit et al. (2020) found decreased accuracy and 

precision to predict IMF with miniaturised compared to larger LG-NIRS systems due to handheld NIRS 

being more subject to day-to-day variation. 

 A recent study on lamb reported that loin and topside IMF was predicted with moderate 

precision and accuracy (R2 = 0.38–0.56; RMSE = 0.79–0.97) using a miniaturised vis-NIRS (350–2000 

nm) in the abattoir 24 h post-mortem (Fowler et al., 2020). Similarly, Pham et al. (2018) found 

promising results comparing smartphone NIRS and LG-NIRS based on chemical IMF determination of 

beef (R2 = 0.75, RMSE = 2.10) but did not include predictions of pH, water or CP. Conversely, the follow-

up study on lamb IMF prediction yielded a much lower R2 and higher RMSE for the handheld NIRS 

(0.27 and 1.28, respectively) compared to benchtop NIRS (0.76–0.83 and 0.34–0.41, respectively) 

(Dixit et al., 2020). Despite the studies of Pham et al. (2018) and Dixit et al. (2020) using smartphone 

NIRS, no traits other than IMF were predicted and only the ground and FD sample presentation was 

analysed. 

 The most precise predictions of chemical measures (r >0.96) have occurred on minced 

(Barlocco et al., 2006; Lanza, 1983; Sun et al., 2011) or dried and ground meat (Prieto et al., 2017; Su 

et al., 2014). However, analyses on ground or minced meat are not applicable for consumers 

purchasing intact meat, and not practical for the meat processing industry due to their destructive 

nature and increased sample processing requirement (Dixit et al., 2017; Prieto et al., 2009; Prieto et 

al., 2017; Viljoen et al., 2007). This has prompted suggestions that less accurate predictions on fresh 
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meat in the abattoir would have more benefit to the industry (Viljoen et al., 2007) and to consumers 

(Dixit et al., 2017). 

 Additionally, NIRS has been successfully used in animal production to predict the 

concentration of stable isotopes and then the type of forages consumed by grazing animals (Dixon & 

Coates, 2009). Scarce research on the use of stable isotopes (13C and 15N) demonstrated that these 

can be used to determine meat origin, nutritional background and thereby authentication of meat 

products (Bahar et al., 2009), which can be particularly useful at retail level where food fraud may 

occur, e.g., grass-fed and grain-fed meat (Prache et al., 2020). Prediction of meat stable isotope 

content by NIRS has not yet been investigated despite the many potential applications. 

 The aim of the present study is therefore to evaluate the potential of a miniaturised 

smartphone NIRS sensor and compare it to a conventional LG-NIRS to measure pH, water, IMF, CP, 

stable isotope ratios (δ13C and δ15N), total C and total N on three different sample presentations 

(intact; FD and ground meat; freeze-dried, oven-dried and ground meat) of a small selection of store-

bought meat cuts. It was hypothesised that prediction of laboratory measurements using the 

smartphone NIRS sensor will be comparable to those made by the LG-NIRS. In addition, it was 

hypothesised that chemical measurements are likely to be better predicted from scans on freeze-dried 

and ground meat (± oven-drying) because this homogenises the samples. Positive results from the 

present study would encourage further research with a larger sample size using the smartphone NIRS 

sensor. 
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2.2. Materials and methods 

2.2.1. Sample collection and preparation 

 Forty-three retail cut samples of beef (n = 27) and lamb (n = 16) (Table 5) were purchased 

from butchers and supermarkets in Sydney, Australia. Sample collection was based to represent a 

broad range of marbling, muscle location, breed, colour, freshness and price. Subjective scoring for 

marbling and colour of muscle and fat was performed according to Australian grading standards (AUS-

MEAT, 2018). Three different meat presentation types were used for scanning: (1) fresh intact (FI) 

upon opening of retail packaging; (2) freeze-dried (FD) following snap freezing (-80 °C); and (3) freeze-

drying (72 h) and subsequently oven-dried at 65 °C overnight to obtain freeze-dried-oven-dried 

(FDOD). 

 

Table 5. Retail meat samples used in this experiment. 

Species Common name Muscle Samples (n) 

Beef Cattleman’s cutlet (Rib eye bone in) LTL 6 
Beef Angus beef tenderloin PM 4 
Beef Angus short ribs boneless SV 7 
Beef Wagyu tenderloin fillet steak PM 4 
Beef Angus scotch fillet (150 days grain-fed) — rib eye boneless LTL 4 
Beef Australian Tomahawk steak (grain-fed) — rib eye bone in LTL 2 
Lamb Cutlet LTL 16 

LTL - m. longissimus thoracis et lumborum; PM - m. psoas major; SV - m. serratus ventralis 

 

2.2.2. Spectroscopy measurements 

 Six scans per cut of beef and three scans per cut of lamb were done using NIRS and 

instrumental colour scanners. Scans were at evenly spaced intervals along the lean (avoiding 

subcutaneous fat and connective tissue) surface of FI meat. The scanners used included the 

smartphone sensor (NIRvascan, Allied Scientific Pro., Gatineau, Quebec, Canada; 900–1700 nm; 

6000:1 signal to noise ratio; 2 x 1 W tungsten halogen lamp; spectral bandwidth 3.5 nm per reading); 
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an LG-NIRS instrument (AgriSpec, ASD Inc., Boulder, CO, USA; 350–2500 nm; 14500:1 signal to noise 

ratio; 100 W halogen lamp; spectral bandwidth 1 nm per reading); and a colorimeter (CR-400 Chroma 

Meter, Konica Minolta Sensing Americas, Inc., Ramsey, NJ, USA) with aperture size of 8 mm, illuminant 

C and 2° standard observer calibrated on a white tile to evaluate instrumental colour (L*a*b*). The 

smartphone NIRS sensor (NIRvascan) was connected via Bluetooth to the NIRScan Nano smartphone 

application (KS Technologies, Colorado Springs, CO, USA) (Fig. 2). For both NIRS and colour 

determination, a glass microscopic slide (1 mm thickness) was used to separate the spectrometers 

and meat surfaces in order to prevent contamination of the apertures. 

 

 

Fig. 2. Comparison of the two NIR spectrometers used to scan meat samples. A) Smartphone NIRS 

sensor: NIRvascan (Allied Scientific Pro., Gatineau, Canada) weighing 136 g and size 82.2 x 66 x 45 mm; 

B) Lab-grade NIRS (LG-NIRS) system: ASD AgriSpec (ASD Inc., Boulder, USA) weighing 5.44 kg and size 

127 x 368 x 293 mm. 

 

2.2.3. pH and temperature measurements 

 Muscle pH and temperature were measured by triplicate (beef) and duplicate (lamb) for each 

cut using a conventional pH-temperature probe (Hanna Instruments, Woonsocket, RI, USA) calibrated 

using buffer solutions at pH = 4.00 and pH = 7.00 as per MLA (2017a) requirements, and then averaged 

into one value for analysis. 

A B 
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2.2.4. Water determination 

 The samples were prepared for chemical analysis after scanning of intact cut and 

measurement of pH, temperature, colour and marbling. Sample preparation for water, CP, stable 

isotopes, C, N, and chemical IMF analyses was done on thirds of the steaks for each respective 

measurement following removal of subcutaneous fat, cut into multiple cubes of approximately 1 cm3 

and then snap-frozen at –80 °C and freeze-dried for 72 h in batches. The difference in weight before 

and after freeze-drying was used to calculate water content (%water = wet weight – dry weight × 100; 

Coombs et al., 2017) with the remainder considered as dry matter. Results were expressed as the 

average of technical duplicates. 

 

2.2.5. Intramuscular fat determination 

 Intramuscular fat (IMF) was determined chemically on FD meat ground in an analytical cutting 

blade mill (IKA A11, IKA Works Inc., Rawang, Selangor, Malaysia) and then analysed using a modified 

Soxhlet method for chemical fat determination in lean muscle based on petroleum ether (Sigma-

Aldrich, Castle Hill, NSW, Australia) extraction methods 960.39 and 945.16a (Helrich, 1990; Perry et 

al., 2001). Total ether extractable fat was determined using 1—2 g of lean FD muscle within an 

extraction thimble following 2 x 2 h flushes (Dow et al., 2011). Results were expressed as a single 

measure of the weight of the fat extracted by the Soxhlet apparatus following drying of the petroleum 

ether at 130 °C for 30 min divided by the total dried meat used (weight of dry extract / total dry weight) 

multiplied by the dry matter (DM) percentage (1 – %DM) to be expressed as the percentage of IMF of 

fresh wet meat. 
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2.2.6. Crude protein determination 

 Sub-samples (1.4-1.7 mg) of FDOD meat were taken for determination of total proportion of 

nitrogen (%N) using an isotope ratio mass spectrometer (Delta V Advantage, ThermoFisher Scientific, 

Bremen, Bremen, Germany) (Mehnaz et al., 2018). Total %N was then multiplied by 6.25 to determine 

CP content of meat per g of DM as per method 981.10 (Helrich, 1990). Results were expressed as a 

percentage of total fresh wet meat and expressed as the average of technical triplicates: 

%𝐶𝑃𝑤𝑒𝑡 =  %𝐶𝑃𝑑𝑟𝑦 × (1 – 
%𝐷𝑀 

100
) (1) 

 

2.2.7. Stable isotope ratios and total C and N determination 

 Stable isotopes were determined using FDOD samples (0.75—0.95 mg; section 2.6) packed 

into tin capsules for dual carbon and nitrogen analysis as described by Bahar et al. (2009) and analysed 

using an isotope ratio mass spectrometer (section 2.6; Mehnaz et al., 2018). Delta notation (δ) was 

used to express the isotope ratios of 13C and 15N in the sample compared with reference values (Vienna 

Pee Dee Belemnite for 13C, air-N2 for 15N) as per the equation: 

𝛿 = ((
𝑅𝑠𝑎𝑚𝑝𝑙𝑒

𝑅𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
) –  1)  × 103 

Where R is the ratio of heavy to light stable isotope and δ is the difference per thousand (‰). Total 

carbon and nitrogen contents in meat samples were also calculated and expressed as percentages. 

Results are expressed as the average of technical triplicates. 

 

2.2.8. Dried and ground NIR spectroscopy 

 Following freeze-drying and grinding for determination of water and IMF contents (see 

sections 2.2.4 and 2.2.5), FD samples (n = 35) were re-scanned (three scans for lamb, six scans for 

beef) in Petri dishes covered by a glass microscope slide using both the smartphone NIRS and LG-NIRS 
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(see section 2.2.2). The non-scanned samples (n = 8) were not considered due to insufficient sample 

present following IMF analysis. Subsequently, following oven-drying for CP and stable isotopes 

determination (overnight at 65 °C; see sections 2.2.6 and 2.2.7), FDOD samples (n = 43) were re-

scanned using the same procedure. These scans were performed to compare different sample 

presentations (Cozzolino et al., 2000; Cozzolino & Murray, 2002). 

 

2.2.9. Prediction models and statistical analysis 

 Spectral data generated from the smartphone NIRS and LG-NIRS were averaged per sample 

(n = 43 for FI and FDOD, n = 35 for FD) and then inverse log transformed (log(1/R)) as described by 

Lanza (1983) prior to graphical presentation and development of Cubist prediction models for 

presentations FI (n = 210), FD (n = 183) and FDOD (n = 210). Cubist regression modelling was used as 

it has not been used in meat spectroscopy previously; instead, it has been used successfully in soil 

spectroscopy studies where it has often outperformed partial least squares regression (Minasny and 

McBratney, 2008; Peng et al., 2019; Tang et al., 2020). Smartphone NIRS data were trimmed between 

wavelength 950 and 1600 nm to eliminate spectral noise and data from both NIRS instruments were 

pre-processed using a Savitzky-Golay smoothing filter and standard normal variate (SNV). Prediction 

models were developed from the spectra of 75% of all samples (randomly generated training data) 

using a Cubist decision trees algorithm (Kuhn & Quinlan, 2020) in R (R Core Team, 2020). The remaining 

25% of samples were used as the independent dataset for validation of the prediction models (test 

data). For each trait (pH, water, IMF, CP, δ13C, δ15N, total C, total N), 50 random bootstrapped samples 

were drawn from the training dataset in order to create 50 independent models. The performance of 

the models was calculated using the averaged 50 predictions with the validation dataset NIRS scans 

against the measured traits in the validation dataset (chemical data). 

 Laboratory measurements (pH, water, chemical IMF, CP, stable isotopes and total C and N) 

for each cut of meat were compared with the corresponding mean NIRS (smartphone and LG-NIRS) 
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values predicted by Cubist models. The goodness-of-fit, or precision, of the models was assessed on 

the test datasets using coefficients of determination (R2) between the two NIRS prediction models and 

laboratory-measured values (ground truth) (Tedeschi, 2006). The RMSE and positive or negative bias 

of predictions were also obtained in R for model error assessment, or accuracy (Tedeschi, 2006). The 

RPD value was calculated as the ratio of standard deviation to standard error of the validation dataset 

(Williams, 2014). Goodness-of-fit was assessed by high R2 and low RMSE and absolute value of bias; 

whereas applicability was assessed by RPD (Camacho-Tamayo et al., 2014; De Marchi, 2013; Williams, 

2001; Williams et al., 2017). Williams (2001) stated that an R2 above 0.83 was required for applications 

in research. However, for the purpose of meat quality predictions in this study, RPD > 2 was considered 

good for calibration and RPD > 3 good for analysis (Barlocco et al., 2006; Williams, 2014). Prediction 

models were considered as very high (R2 > 0.9) high (0.7 < R2 ≤ 0.9), moderate (0.5 < R2 ≤ 0.7), low (0.3 

< R2 ≤ 0.5), and very low (R2 ≤ 0.3) in precision (Williams et al., 2019). 

 

2.3. Results 

2.3.1. Physical and chemical measurements 

 Descriptive statistics for physical and chemical measurements are in Table 6. The largest 

variability and range between samples was observed for colour, marbling, and IMF, and lowest for 

water content and pH (Table 6). There were 10 samples with mean pH above 5.7 considered as dark 

cutters (data not shown). Regarding stable isotopes, lamb had greater 13C depletion than beef (–24.32 

vs. –21.49) and less increase in 15N (5.98 vs. 8.01) compared with reference values (Table 6). A 

correlation matrix of reference measurements is provided in Table 7. 
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Table 6. Descriptive statistics for meat quality traits (n = 43) analysed and predicted using 

smartphone and laboratory-grade NIRS sensors. 

Trait Mean SEM SD Min. Max. Median CV (%) 

pH 5.66 0.53 0.15 5.45 6.14 5.60 2.65 

Temperature (°C) 17.50 0.18 1.89 9.80 19.80 17.70 10.80 

Water (%) 71.10 0.31 2.87 65.77 78.77 71.16 4.04 

IMF (% fresh) 6.24 0.52 3.38 0.83 16.19 5.94 54.17 

CP (% fresh) 21.73 0.29 2.48 14.33 27.55 21.67 12.40 

δ13C (‰) –22.54 0.23 2.18 –27.87 –17.80 –22.74 –9.65 

δ15N (‰) 7.25 0.14 1.28 5.43 10.07 6.90 17.62 

Total C (%DM) 15.00 0.22 2.00 11.37 20.96 14.86 13.31 

Total N (%DM) 3.43 0.05 0.42 2.27 4.88 3.47 12.41 

CIE colour 

L* 36.28 0.21 3.06 26.98 43.05 36.47 8.43 

a* 9.44 0.14 2.06 3.46 15.53 9.74 21.82 

b* 3.75 0.08 1.17 0.47 7.85 3.73 31.20 

AUS-MEAT 

Marbling 3.49 0.26 1.68 1 6 3 48.14 

Meat colour 2.21 0.24 1.55 1B 7 2 70.14 

Fat colour 2.14 0.24 1.55 0 5 2 72.43 

 

Table 7. Pearson correlation matrix between meat quality traits and chemical composition of 43 

beef and lamb samples.1 

 
pH Water IMF CP δ13C δ15N Total C 

pH  –0.12 (0.43) 0.24 (0.11) –0.18 (0.26) 0.19 (0.23) 0.56 (<0.001) 0.37 (0.01) 

Water   –0.80 (<0.001) –0.04 (0.79) –0.01 (0.96) –0.28 (0.07) –0.76 (<0.001) 

IMF    0.22 (0.16) –0.05 (0.74) 0.22 (0.16) 0.74 (<0.001) 

CP     0.11 (0.47) –0.14 (0.36) –0.07 (0.66) 

δ13C      0.57 (<0.001) –0.03 (0.83) 

δ15N       0.40 (0.01) 
1 Pearson’s correlation coefficients (r) between corresponding meat quality traits and P-values are in 

brackets. 
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2.3.2. Spectral data 

 The averaged spectra for the FI (Fig. 3), FD (Fig. 4) and FDOD (Fig. 5) samples were calculated 

for smartphone NIRS and LG-NIRS. Common peaks for both devices were identified at 950 nm, 1220 

nm, and 1462 nm for FI samples (Fig. 3). These peaks corresponded to -OH (water), -CH2 (fat), and -

OH (water), respectively (Cozzolino et al., 2002; Osborne et al., 1993). Further peaks outside the 900–

1700 nm spectrum occurred at 434 nm, 550 nm, 583 nm and 1898 nm which were not captured by 

NIRvascan (Fig. 2). The latter of these can be related to -NH2 (CP) (Osborne et al., 1993). Freeze-dried 

meat had peaks at 1191 nm, 1516 nm and 1700 nm (Fig. 4), with similar peaks at 1188 nm, 1488 nm 

and 1700 nm occurring in FDOD meat (Fig. 5). 
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Fig. 3. Mean inverse log reflectance spectra (n = 210) generated by the handheld smartphone NIRS 

(NIRvascan, SEM = 0.12–0.16) and lab-grade NIRS (LG-NIRS, ASD AgriSpec, SEM for 350–2500 nm = 

0.09–0.17; SEM for 900–1700 nm = 0.10–0.17) on 43 fresh intact (FI) retail meat samples. 
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Fig. 4. Mean inverse log reflectance spectra (n = 183) generated by the handheld smartphone NIRS 

(NIRvascan, SEM = 0.08–0.09) and lab-grade NIRS (LG-NIRS, ASD AgriSpec, SEM for 350–2500 nm = 

0.08–0.13; SEM for 900–1700 nm = 0.09–0.11) on 35 freeze-dried (FD) meat samples. 
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Fig. 5. Mean inverse log reflectance spectra (n = 210) generated by the handheld smartphone NIRS 

(NIRvascan, SEM = 0.08–0.09) and lab-grade NIRS (LG-NIRS, ASD AgriSpec, SEM for 350–2500 nm = 

0.07–0.12; SEM for 900–1700 nm = 0.07–0.08) on 43 freeze-dried and oven-dried (FDOD) meat 

samples. 

 

2.3.3. Prediction models 

 The average coefficient of determination for each device across all sample presentations and 

traits predicted was 0.53 and 0.56 for smartphone NIRS and LG-NIRS, respectively (Table 8). Similarly, 

RMSE (1.31 and 1.34) and RPD (1.55 and 1.54) were similar between both devices, although the 

smartphone NIRS showed lower mean bias than LG-NIRS (0.09 and 0.20, respectively). On average 

across sample presentations and devices, water and IMF concentrations were predicted with the 

highest accuracies (R2 = 0.67 and 0.70, respectively). Total C and pH showed the lowest accuracy with 

average R2 of 0.39 and 0.38, respectively (Table 8). However, differences amongst devices and sample 

presentations existed. 

 For example, the smartphone NIRS showed a low accuracy to predict pH, δ13C, δ15N, total C 

and total N from FI meat (R2 = 0.37 to 0.44) and moderate to predict water content, whereas it 

predicted CP poorly (Table 4). Differences between the two NIR spectrometers were negligible for the 

majority of measurements except for IMF, CP and δ15N for which LG-NIRS performed superiorly (Table 

8). 

 Most predictions, regardless of the NIR spectrometer used, were more accurate and precise 

on FD and FDOD (average R2 > 0.58) compared to FI meat (R2 < 0.49) except for pH and total C, though 

both traits were better predicted in FDOD form by the LG-NIRS (Table 8). For FD meat, the smartphone 

NIRS was superior in predicting CP and δ13C. In contrast, LG-NIRS provided better predictions of δ15N. 

The FD treatment was particularly notable for its high precision to predict water, IMF and δ13C. 



83 
 

 For FDOD meat, IMF and CP and showed higher accuracy and precision using smartphone 

NIRS; meanwhile LG-NIRS was more accurate predicting pH and total C. 

 

Table 8. Goodness-of-fit statistics on the validation dataset (25%, n = 11) of various meat quality 

traits predicted using a smartphone NIRS (NIRvascan) and a laboratory-grade NIRS (ASD AgriSpec) 

against chemically measured meat quality traits. 

Parameter Smartphone NIRS Laboratory-grade NIRS 

 r2 RMSE Bias RPD r2 RMSE Bias RPD 

Fresh intact (FI)         
  pH 0.404 2.190 0.256 1.237 0.389 2.175 0.345 1.245 
  Water (%) 0.540 0.757 0.040 1.501 0.599 0.725 0.160 1.568 
  IMF (%) 0.534 2.725 0.392 1.420 0.664 2.454 2.454 1.577 
  CP (%) 0.253 3.096 0.564 1.157 0.509 2.583 0.385 1.387 
  δ13C (‰) 0.415 0.136 0.040 1.227 0.395 0.138 0.046 1.205 
  δ15N (‰) 0.394 0.911 –0.189 1.268 0.602 1.551 0.151 1.562 
  Total C (%) 0.442 0.344 0.042 1.259 0.397 0.345 0.053 1.256 
Freeze-dried (FD) 
  pH 

 
0.256 

 
2.441 

 
–0.421 

 
1.143 

 
0.299 

 
2.312 

 
–0.312 

 
1.207 

  Water (%) 0.702 0.645 –0.039 1.819 0.729 0.614 –0.058 1.910 
  IMF (%) 0.813 1.368 –0.278 2.312 0.812 1.347 –0.142 2.348 
  CP (%) 0.715 1.604 0.435 1.813 0.524 2.005 0.420 1.450 
  δ13C (‰) 0.826 0.068 0.007 2.351 0.699 0.090 0.027 1.765 
  δ15N (‰) 0.458 1.484 –0.112 1.338 0.721 1.055 –0.204 1.883 
  Total C (%) 0.255 0.391 –0.068 1.141 0.311 0.366 –0.047 1.218 
Freeze-dried oven-dried (FDOD) 
  pH 

 
0.273 

 
2.326 

 
0.374 

 
1.164 

 
0.642 

 
1.744 

 
0.468 

 
1.553 

  Water (%) 0.725 0.594 0.101 1.913 0.706 0.607 0.053 1.873 
  IMF (%) 0.779 1.844 0.328 2.099 0.572 2.586 –0.027 1.497 
  CP (%) 0.576 2.317 0.354 1.546 0.473 2.645 0.480 1.355 
  δ13C (‰) 0.544 0.115 0.031 1.451 0.608 0.105 0.022 1.587 
  δ15N (‰) 0.675 1.362 –0.011 1.780 0.705 1.374 –0.317 1.764 
  Total C (%) 0.278 0.371 0.061 1.168 0.638 0.279 0.077 1.552 
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2.4. Discussion 
 The present study tested the ability of a low-cost, handheld smartphone NIRS against the 

bulkier and more expensive, yet much wider wavelength range LG-NIRS. The ability of NIRS to detect 

chemical bonds (C-H, N-H, O-H corresponding to fat, protein and water, respectively) at 800–2500 nm 

makes it a viable solution for predicting chemical characteristics in meat and other food products 

(Osborne et al., 1993). Surprisingly, both NIRS devices performed similarly with moderate precision 

and accuracy to predict the traits of interest in the present study. The smartphone handheld NIRS 

sensor was developed for consumer use with the ability to instantly scan and upload data into the 

cloud via its Bluetooth connection to smartphones. Its shorter wavelength range (900–1700 nm) was 

not expected to significantly reduce its ability to predict chemical characteristics based on prior 

investigations (Coombs et al., 2019; Pham et al., 2018; Tang et al., 2020). This study was also novel 

and different from most previous work as it looked primarily at scanning FI meat with a view to 

deployment of such small handheld scanners for consumers, retailers, and in the meat processing 

industry measuring more parameters (pH, water, CP) and in multiple sample presentations compared 

to studies which only predicted IMF (Dixit et al., 2020; Fowler et al., 2020; Pham et al., 2018; Prieto et 

al., 2011). Model performance metrics generated were similar to other studies comparing portable 

NIRS vs. benchtop LG-NIRS (Tang et al., 2020; Williams et al., 2017). Prediction models for the 

smartphone NIRS in the present study showed promise compared to LG-NIRS in all three sample 

presentations (FI, FD, FDOD). However, neither NIRS sensor reached the accuracy needed for the 

prediction of analytical traits in FI format (all FI R2 < 0.70; RPD < 2.0) desired for industry applications 

(Barlocco et al., 2006; Fowler et al., 2020; Pham et al., 2018; Williams, 2001). 

 The accuracy and precision (RMSE and R2, respectively) of pH predictions of FI meat by the 

smartphone NIRS and LG-NIRS were low and similar to each other, and the precision and accuracy of 

smartphone NIRS predictions decreased in FD and FDOD formats. Previous studies have reported a 

range of accuracies to predict meat pH ranging from R2 = 0.31 in FI beef using a near-infrared 

transmittance instrument at 850–1050 nm (De Marchi et al., 2013) to R2 = 0.62 using benchtop LG-
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NIRS at 350–1900 nm on fresh (De Marchi et al., 2013) and minced beef (Yang et al., 2010). The present 

study showed similar values to these (R2 = 0.26–0.64), with the overall low precision in FI format (R2 = 

0.39–0.40) likely resulting from a low pH variation within samples, as mentioned in previous studies 

(De Marchi et al., 2013; Prieto et al., 2009). The smartphone NIRS prediction of pH was most accurate 

on FI meat, in agreement with De Marchi et al. (2013) who suggested that intact scanning yielded 

more precise predictions as this is the format pH is measured in the industry. The RPD in the present 

study for pH on FI meat (1.23–1.25) was poor but comparable to those found previously by De Marchi 

(2013) using vis-NIRS (1.08–1.52) on-line in the abattoir. The LG-NIRS in the present study predicted 

pH with the highest R2 and RPD on FDOD meat compared to FI and FD. These results agree with earlier 

findings comparing portable and LG-NIRS using minced and intact beef, where ground meat showed 

higher precision and accuracy than fresh meat for prediction of pH (Cozzolino and Murray, 2002). 

However, the majority of studies using vis-NIRS (350–2500 nm) reported better predictions of pH 

compared to the present study (R2 = 0.65–0.97) on FI beef and lamb (Andrés et al., 2008; Elmasry et 

al., 2012b; Kamruzzaman et al., 2012b; Qiao et al., 2015). As pH probes are non-destructive and 

objective, the only improvements from replacement of conventional measurement by non-invasive 

NIRS would be more rapid determination (scan + intervals ~ 10 seconds), real-time prediction and 

improvements in food safety by avoidance of cross-contamination between carcases (De Marchi, 

2013). Further research could investigate non-contact of carcases by scanning at a distance (1.5–2.5 

cm or longer), which may reduce the need for scan replication by increasing scanning area (Dixit et al., 

2017; Osborne et al., 1993), while it could also allow for predictions of dark cutters (pH > 5.7; MLA, 

2017a) and tenderness (Silva et al., 1999) to save time for retailers (Reis and Rosenvold, 2014). 

 Prediction of water content in the present study showed high accuracy and precision by both 

scanners on FD and FDOD meat (R2 = 0.70–0.73; RMSE < 0.8), but it was lower on FI meat (R2 = 0.54–

0.60). Similarly, very high precision (R2 > 0.84) was previously reported using NIRS on FI (Kamruzzaman 

et al., 2012b; Sun et al., 2011) and minced beef (Su et al., 2014; Sun et al., 2011; Yang et al., 2010), 

which suggested potential for use in quality control according to Williams et al. (2019). However, De 
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Marchi et al. (2013) found a significantly lower R2 values of 0.01–0.12 on fresh ground meat. The ability 

to predict water content in dried and ground meat (FD and FDOD) was surprising, though this may 

have occurred due to high negative correlations with IMF and total C (–0.80 and –0.76, respectively). 

 The present study used samples with a wide range of chemical IMF content to represent 

consumer options in stores, denoted by visual marbling, as per large studies (Bindon, 2004; Savell et 

al., 1986). The mean IMF encountered was comparable to those found previously for beef (Lanza, 

1983; Magalhães et al., 2018), lamb (Pullanagari et al., 2015) and mutton (Viljoen et al., 2007), 

although were higher than most prior studies on lamb (Dixit et al., 2020; Fowler et al., 2020; 

Kamruzzaman et al., 2012a; Karamichou et al., 2006) and beef (Cozzolino et al., 2000; Prieto et al., 

2011). Marbling score and IMF are important measures of eating quality because of increased flavour, 

juiciness and liking (Frank et al., 2016; Su et al., 2014; Thompson, 2004). In agreement with our 

hypothesis, IMF was better predicted in FD compared to FI meat due to the homogenisation, lack of 

moisture and identical presentation for analysis. In a prior pilot study, Coombs et al. (2019) found 

predictions of subjective marbling score of LG-NIRS to be more precise than those from the NIRvascan 

used in the present study. The measurement of chemical IMF was made as it prompts the need for a 

more objective and global marbling grading system, such as NIRS-predicted based on accurate and 

precise predictions of chemical IMF content (Bindon, 2004; Polkinghorne & Thompson, 2010). The 

precision of the predictions of chemical IMF on FI meat in the present study were much higher than 

those reported for subjective marbling score by smartphone NIRS (Coombs et al., 2019) and LG-NIRS 

(Magalhães et al., 2018), which had R2 < 0.30. Results on prediction of IMF of the present study are 

also similar to previous research with beef using vis-NIRS (350–1800 nm; R2 = 0.33–0.35; Prieto et al., 

2011) and lamb using handheld NIRS (900–1800 nm; R2 = 0.38–0.58, Fowler et al., 2020). Other studies 

have yielded similar or better results compared to the present study (R2 from 0.66–0.89) using on-line 

(portable NIRS) predictions of chemical IMF on FI meat (Kamruzzaman et al., 2012a; Pham et al., 2018; 

Pullanagari et al., 2015; Sun et al., 2011) or LG-NIRS on minced or FD meat (Cozzolino and Murray, 

2002; Dixit et al., 2020; Yang et al., 2010). The predictions in the present study for FD meat showed 
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high precision and accuracy but were lower compared to other studies using minced beef without 

freeze-drying which reached values to allow applications for quality assurance as suggested by 

Williams et al. (2019) (R2 > 0.92; Lanza, 1983; Su et al., 2014; Sun et al., 2011). Regarding the relatively 

high RPD for IMF predictions using FD meat in the present study, both NIRS prediction models seem 

applicable for “rough screening” (Williams et al., 2019), although increased sample size and 

optimisation of FI prediction models (poor RPD of 1.42–1.58) would need to occur for NIRS to be 

considered as an analytical or quality control tool in industry (Barlocco et al., 2006). 

 Crude protein concentrations in the present study were similar to those found previously for 

beef m. longissimus lumborum (Cozzolino et al., 2002) and lamb m. semimembranosus (Karamichou 

et al., 2006). Similar to IMF, CP was predicted with the highest precision on FD meat with both 

scanners, even though the chemical measurement occurred in FDOD form. Our FD results were similar 

in precision to those found on fresh intact lamb using NIRS (900–1700 nm) and hyperspectral (HS) 

camera by Kamruzzaman et al. (2012a) with a smaller CP range than the present study (21.06–24.05% 

CP; R2 = 0.67). However, the precision of these results was much lower than those previous studies on 

minced beef where R2 > 0.8 (Lanza, 1983; Sun et al., 2011; Yang et al., 2010). The shorter wavelength 

range of the NIRS-HS (Kamruzzaman et al., 2012a) was similar to the handheld NIRS in the present 

study, although its predictions on FI meat were more precise than the predictions by both scanners in 

the present study, showing the effect of the HS camera adding spatial resolution and detail. The LG-

NIRS showed moderate precision (R2 = 0.51) on FI meat, similar to an earlier study comparing intact 

and minced lamb (Cozzolino and Murray, 2002). The poorer prediction of CP compared with water 

and IMF contents in the present study agrees with previous results using fresh lamb (Kamruzzaman et 

al., 2012a), minced beef and pork (Lanza, 1983), ground mutton (Viljoen et al., 2007), ground lamb 

and emulsified beef (Kruggel et al., 1981). Kamruzzaman et al. (2012a) attributed this poorer 

prediction to a narrower range of CP data in comparison to water and IMF, however the present study 

had broader ranges of CP than those measured previously (Kamruzzaman et al., 2012a; Lanza, 1983; 

Sun et al., 2011; Yang et al., 2010). The results indicate that the predictions generated from the NIRS 
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scanners used in the present study showed low to moderate accuracy and precision and were low for 

FI meat, therefore these sensors would not be sufficient for abattoir screening. 

 Analysis of stable isotopes showed similar values to Australian (Nakashita et al., 2008) and 

Irish beef (Bahar et al., 2005). Increased depletion of 13C in beef (δ13C, from –24 to –25‰) can indicate 

grass feeding compared to grain or legume feeding (Bahar et al., 2005; De Smet et al., 2004; Moloney 

et al., 2006). Meanwhile, less depletion (δ13C, from –22 to –18 ‰) can indicate C4 forages being 

consumed by the animals such as maize (Bahar et al., 2005; Bahar et al., 2009) and longer (> 60 d) time 

on feed in the feedlot (Bahar et al., 2009). It is also possible that δ13C infers differences in production 

region (Baroni et al., 2011) although it is unknown if the differences between regions is related to the 

type of feed consumed, genetics or other environmental factors. Similarly, greater 15N accumulation 

(δ15N from 6 to 10 ‰) inferred grass feeding compared to grain or concentrate (Bahar et al., 2005; 

Moloney et al., 2006) or longer DOF from 60 to 220 d, indicating slow turnover within bovine muscle 

(Bahar et al., 2009). In the present study, cattleman’s cutlet had the least 15N and grain-fed Australian 

tomahawk steak the highest. Meanwhile, the least 13C depletion occurred in grain-fed Australian 

tomahawk steak and Angus beef tenderloin, and the most occurring in 150 d grain-fed Angus Scotch 

fillet and lamb cutlets. It is important to highlight that the present study was not designed to assess 

differences between origin, cut or nutritional background because the objective was to obtain random 

samples containing multiple feeding systems, breeds and cuts to make the results more generalisable. 

Differences in the stable isotopes and total C and N contents between samples were small, likely 

because only one city was used for sampling, and therefore NIR predictions of these were poor in 

accuracy and precision. However, total C was predicted with higher R2 by LG-NIRS compared to 

smartphone NIRS in the present study, which was similar to Tang et al. (2020) with air-dried soil. NIRS 

predictions of total C, N and stable isotope ratios have not yet been tested in meat and the results 

from the present study provide preliminary results and some avenues for exploration in future work, 

particularly for tracing meat origin and nutritional background. 
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 Handheld NIR spectrometers such as the NIRvascan could find applications along the supply 

chain from the meat processing industry for grading to retailers for sourcing, marketing, restaurants 

and even consumers. Further testing in an industrial setting, such as a commercial abattoir, would 

improve sample size and add further support to its potential adoption, as it can take place on the 

exposed 12th–13th rib where grading occurs. Its potential use as an objective meat grading tool can 

decrease the costs associated with labour and improve transparency within the meat processing 

industry. Further testing including contactless distance scanning would also be beneficial towards 

adoption by processing and retail industries (Dixit et al., 2017). On-line detection of dark cut beef and 

sorting into groups using NIRS has shown promise previously at 95% for FI meat (Prieto et al., 2014b; 

Reis and Rosenvold, 2014) as has similar sorting for pale, soft, exudative pork at an industrial level 

(Prieto et al., 2017). Exploration of tenderness and shear force predictions using handheld NIRS could 

be another potential area of investigation, with LG-NIRS showing promise in identifying tender and 

tough meat post-processing (Shackelford et al., 2005; Yancey et al., 2010), although on-line 

predictions of these are still behind those of laboratory measures (Dixit et al., 2017). Additionally, 

current chemometric prediction models (water, CP, IMF) could potentially be improved through the 

use of HS imaging in combination with NIRS due to the capture of spatial distribution of fat and muscle 

on HS images (Kamruzzaman et al., 2012a; 2012b). Such prediction models have been shown to non-

destructively determine nutritional quality in intact lamb samples with high accuracy. 

 The accuracy and precision of predictions reported in the present pilot study position the 

smartphone NIRS as a tool more suited to consumers, retailers or restaurants to monitor marbling or 

IMF, water, protein and pH of meat. The use of such a consumer grade scanner to detect fat and 

protein contents could be very useful for consumers at a retail level, particularly given the lack of 

difference between predictions from each NIR device. However, further studies with larger sample 

sizes are required before firm conclusions can be drawn. The use of an accurate and precise predictor 

of objective IMF or marbling in comparison to subjective marbling has been long hailed as an industry 

solution which can also improve consumer confidence in meat without destruction of the product to 
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obtain chemical measures (Bindon, 2004; Dixit et al., 2017). For instance, a previous study found AUS-

MEAT marbling to explain just 30–40% of the variation in chemical IMF, consistent with most 

Australian studies conducted (Harper et al., 2003). This is less than the R2 reported in the present study 

using the smartphone NIRS on FI meat. Store-labelled “lean meat” is expected to contain less than 2% 

fat (Pedersen et al., 2003), significantly less than the IMF determined chemically in the majority of 

studies cited. 

 Limitations of the present study include the smaller sample size, the small size of samples used 

for water content measurement due to size restrictions of the freeze-dryer used, and the experimental 

design of chemical measurements taken from random slices rather than corresponding to scanning 

location, all of which may have reduced the predictive capacity of the NIRS scanners. Due to these 

limitations, these conclusions are to be interpreted with caution.  
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2.5. Conclusion 
 The use of an affordable handheld, smartphone NIRS scanning system for meat was trialled in 

the present pilot study with a small number of samples to explore the potential of this technology to 

measure meat quality attributes. The low-cost consumer grade NIRS sensor showed similar accuracy 

and precision of predictions to a laboratory-grade NIRS despite its limited wavelength range. Despite 

promising predictions compared to LG-NIRS, the miniaturised smartphone NIRS instrument did not 

yield enough precision nor accuracy on intact meat samples required for adoption as a consumer tool 

based on results from the present study. However, with respect to the small sample size used, the 

smartphone NIRS sensor deserves further research with larger datasets to increase generalisation of 

the prediction equations, for example testing in a commercial abattoir setting where all meat is fresh 

(not aged) and official grading is performed.  
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3. Portable vibrational spectroscopic methods can discriminate 

between grass-fed and grain-fed beef 

Published in Journal of Near Infrared Spectroscopy 29(6): 321-329. 

 

Abstract. This chapter analysed the ability for portable near-infrared reflectance (NIR) and Raman 

spectroscopy sensors to differentiate between grass-fed and grain-fed beef. Scans were made on lean 

and fat surfaces of 108 beef steak samples labelled as grass-fed (n=54) and grain-fed (n=54), with 

partial least squares discriminant analysis (PLS-DA) and linear discriminant analysis (LDA) used to 

develop discrimination models which were tested on independent datasets. Furthermore, PLS-DA was 

used to predict visual marbling score and days on feed (DOF). The NIR spectra accurately discriminated 

between grass- and grain-fed beef on both fat (91.7%, n = 92) and lean (88.5%, n = 96), as did Raman 

(fat 95.2%, n = 82; lean 69.6%, n = 68). Fat scanning using NIRS moderately predicted DOF (r2
val = 0.53), 

though Raman and NIRS lean prediction models for DOF and marbling were less precise (r2
val < 0.50). 

It can be concluded that portable NIR and Raman spectrometers can be used successfully to 

differentiate grass-fed from grain-fed beef and therefore aid retail and consumer confidence.  
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3.1. Introduction 

Globally, beef products are labelled by feed type (grass or grain), breed, country of origin and cut 

(muscle type). Higher-end retailers sometimes supply meat grading qualities such as AUS-MEAT (2018) 

marbling score or Meat Standards Australia (MSA) certification (MLA, 2017a; Polkinghorne & 

Thompson, 2010). In general, these qualities are not included when labelling beef at retail level, but 

an unspoken confidence exists amongst consumers that the labelling is accurate. Consumers 

worldwide have been known to pay premium prices for certain characteristics that denote good eating 

quality such as certain cuts, tenderness and marbling (Bonny et al., 2018; Pethick et al., 2018; 

Polkinghorne et al., 2008). Grass-fed beef is lower in fat, and is considered to be of superior nutritional 

quality, safety and environmental friendliness compared to grain-fed beef, though often at the 

expense of eating quality (Prache et al., 2005; Van Elswyk & McNeill, 2014). However, the industry has 

no robust tools to confirm that the labelling of products is accurate, which may result in product 

manipulation and mislabelling by producers, processors and retailers being prevalent (Logan et al., 

2020a; Prache et al., 2020; Xu et al., 2020). In Australia, certification of grass-fed beef is assessed by 

the Pasturefed Cattle Assurance System (PCAS), based on solely grazing on pasture and consumption 

of any amount of grain being banned (PCAS, 2016). Grain-fed beef is governed by the National Feedlot 

Accreditation Scheme with a list of certified grain types for feeding and a minimum number of days 

finished on feed (AUS-MEAT, 2018). 

 The use of analytical methods such as Raman spectroscopy (Logan et al., 2020a; Logan et al., 

2020b; Xu et al., 2020) and near-infrared reflectance spectroscopy (NIRS) have been used previously 

to differentiate beef based on feeding regime (Cozzolino et al., 2002; Prieto et al., 2014a). Cozzolino 

et al. (2002) found accuracies of 79–83% in classification of beef either from pasture or maize silage 

feeding. However, the latter study lacked industry applications because it scanned homogenised 

ground beef using a large and non-portable NIRS. In contrast, Prieto et al. (2014a) were not able to 

reliably differentiate between ground beef products from cattle fed either sunflower or flaxseed, 

although chemical composition was predicted accurately. 



94 
 

 Near-infrared spectroscopy of intact beef has predicted various meat quality traits, such as 

pH, fatty acid profile, shear force and colour to various accuracies (Andrés et al., 2008; Byrne et al., 

1998; Magalhães et al., 2018; Prieto et al., 2011; Prieto et al., 2017). However, no evidence of studies 

using NIRS scanning of intact beef for purposes of discriminating grass-fed and grain-fed feeding 

regime have been found. Recent studies have shown successful discrimination analysis of feeding 

regime (grass-fed and grain-fed) on intact subcutaneous fat from beef brisket (accuracy 85–98.5%; 

Logan et al., 2020b; Logan et al., 2021a; Logan et al., 2021b) using a handheld Raman spectrometer, 

although no studies have discriminated beef based on feeding regime using Raman spectra collected 

from lean tissue (Chapter 1). This evidence presents an opportunity for future use of both NIRS and 

Raman in meat processing or retail sectors for authentication. Raman has also been used on intact 

beef to analyse structure, molecular interactions, fatty acid concentration and species (Xu et al., 2020; 

Aalhus et al., 2014; Ellis et al., 2005; Fowler et al., 2015b; Fowler et al., 2017; Fowler et al., 2018). In a 

recent study, a lab-grade vis-NIR spectrometer was able to discriminate barley and corn finished beef 

loins at an accuracy of 90–94% (Barragán et al., 2021). 

 One issue with conventional analytical methodologies is their large size, high cost, and non-

portable nature. For this reason, palm-sized near-infrared spectrometers have been developed for 

industry and consumer applications (Dixit et al., 2017; Teixeira dos Santos et al., 2013). Despite shorter 

wavelength ranges (900–1700 nm) often restricting predictive capabilities (Dixit et al., 2017; Dixit et 

al., 2020; Teixeira dos Santos et al., 2013), these handheld spectrometers are much cheaper, smaller 

and can connect to a smartphone. Indeed, some studies have shown comparable predictions from 

low-cost smartphone NIR spectrometers to larger benchtop spectrometers to measure meat quality 

and chemical attributes (Coombs et al., 2019; Pham et al., 2018), and soil quality (Tang et al., 2020). 

However, visual marbling or chemical fat content have been predicted with low to moderate precision 

(r2
CV or r2

val = 0.27–0.75) using handheld NIR (Coombs et al., 2018; Dixit et al., 2020; Fowler et al., 2020) 

and Raman spectrometers (Fowler et al., 2015b). Interestingly, none of these studies compared 

Raman with low-cost consumer grade NIR spectrometers to predict DOF or differentiate grass-fed and 



95 
 

grain-fed beef, which could expand the adoption and use of NIR technology for commercial 

applications. 

 The aims of the present study were therefore to use two portable vibrational spectrometers 

(Raman and NIR) to differentiate between grass-fed and grain-fed beef without prior information on 

the exact diet received by the animal, the cut name, or the muscle type on a selection of whole, 

unhomogenised store-bought cuts labelled as grass-fed or grain-fed for 100, 150 or 300 minimum days 

on feed (DOF). Furthermore, DOF and visual scoring of MSA marbling were predicted using these 

spectroscopic methods scanning both lean and fat tissues. In previous studies, Raman spectroscopy 

has been successful in differentiating grass-fed and grain-fed beef and in predicting marbling. 

However, handheld NIR spectrometers designed for consumer use have not been trialled for 

discrimination of feeding regime, which could greatly benefit the consumer and retail industry with 

an objective, portable, practical, and low-cost classification system. Furthermore, the ability to predict 

DOF has not been assessed previously, and its accurate prediction shows great potential for the meat 

supply chain.  
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3.2. Materials and Methods 

3.2.1. Sampling and experimental design 

A total of 108 beef steak samples, comprising 54 grass-fed and 54 grain-fed samples, were used in this 

study. All samples were purchased locally from butchers and supermarkets, with 42 of the 54 grass-

fed samples sourced from a certified butcher which partners with five specific trustworthy farms, 

providing full production, animal, and background information (https://www.1888certified.com.au). 

The remaining 12 grass-fed samples were PCAS certified (PCAS, 2016). Grain-fed samples were all 

certified by the National Feedlot Accreditation Scheme (NFAS) and labelled with minimum DOF 

information in the categories of 100 (n = 12), 150 (n = 23) and 300 (n = 19) (https://www.nh-

foods.com.au/facilities/whyalla-beef/). Nine different cuts (bolar blade, T-bone, porterhouse/New 

York, rib eye, rump, scotch, shin, tri-tip, and short ribs) were used across the entire study, though cut 

type was a random effect and not included as a factor for analysis in this study. Visual scoring of 

marbling was performed quantitatively according to MSA standards (MLA, 2017a). 

 

3.2.2. Near-infrared reflectance and Raman spectroscopy 

A palm-sized (8.2 x 6.6 x 4.5 cm, 136 g) handheld NIR spectrometer based on the Texas Instruments’ 

Digital Mirror Device (NIRvascan, Allied Scientific Pro., Gatineau, Canada) was connected via Bluetooth 

to a smartphone using the NIRScan Nano application (KS Technologies, Colorado Springs, USA) and 

used to acquire reflectance spectra between 900 and 1700 nm (3.5 nm intervals, 1.69 x 0.025 mm slit 

size, 25–50 ms scan time) on meat. The Raman spectrometer (Bravo, Bruker Optics, Billerica, USA) 

acquired spectra between 300 and 3200 cm-1 (2 cm-1 intervals, 1 x 1 mm slit size, 5 second scan) using 

Duo LaserTM excitation (power < 100 mW; 700–1100 nm). Both spectrometers were calibrated using 

inbuilt wavenumber calibration. Spectra were acquired on both lean and fat surfaces, but eight grass-

fed samples (rib eye steaks) had no testable fat. Ten scans were performed on the surface of each lean 

meat sample (n = 54 grass, n = 54 grain) and four scans on the fat surface (n = 46 grass, n = 54 grain). 
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It is worth noting that the size (27 x 15.6 x 6.2 cm, 1.5 kg) of the Raman affected its portability. Both 

NIR and Raman spectra were acquired on meat covered by plastic wrap to limit cross-contamination 

and eliminate probe cleaning time. Due to the availability of beef steaks, sampling was performed in 

two separate sessions. 

 

3.2.3. Analysis of spectral data 

Lean and fat spectral datasets for each of the Raman and NIR spectrometers were kept separate for 

all cases. Raman data were automatically downloaded to the Bruker OPUS software (version 8.5, 

Bruker Optics, Ettlingen, Germany) and then converted to comma separated values (CSV) format in 

Microsoft Excel. The NIR spectra were automatically stored in the NIRScan Nano smartphone 

application in CSV format and downloaded to Microsoft Excel. All Raman and NIR spectra for the same 

sample (repetition) were averaged using OPUS and Microsoft Excel, respectively, prior to statistical 

analysis and model development. Averaged spectral data per sample were imported into R (R Core 

Team, 2020), where NIRS data were inverse log transformed (log(1/R)) as per Lanza (1983) and no 

missing values were obtained. To detect outliers, both NIR and Raman spectral data were scaled and 

centred, then analysed via principal components analysis (PCA) model to identify Q residuals and 

Hotelling T2 values plotted with two components using the mdatools package in R (Kucheryavskiy, 

2020; Kucheryavskiy, 2021). Outliers were defined as having orthogonal and score distances > 20 on 

the residual plot (Kucheryavskiy, 2021). For Raman, lean data had eleven outliers which required 

removal (n = 97) and fat data had fourteen (n = 86). No outliers were detected for either fat or lean 

NIRS data. Data were further pre-processed using standard normal variate (SNV) by scaling of rows as 

described by Huang et al. (2010). 
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3.2.4. Discrimination models for grass-fed and grain-fed beef 

Calibration models were developed using the Caret package (Kuhn, 2020) in R with 75% of the spectral 

data used for the training dataset and 25% for the independent validation dataset using an inbuilt 

function of the tidymodels package (Kuhn & Wickham, 2020). Partial least squares discriminant 

analysis (PLS-DA) and linear discriminant analysis (LDA) were used to determine the accuracy, 

sensitivity, and specificity of the trained model to discriminate between grass-fed or grain-fed beef on 

the independent dataset. Four training models for each spectrometer and tissue type were developed 

(NIRS lean, NIRS fat, Raman lean and Raman fat) and repeated 10-fold cross-validation was performed 

in Caret with five repetitions. Model development and selection (15 components based on maximised 

receiver operator curve = 1.00) was done in the Caret package of R (Kuhn, 2020). Model evaluation for 

discriminant analysis was done using a two-class (grass or grain) confusion matrix of the classified 

predictions, applying the training or calibration models (PLS-DA and LDA) to both the calibration and 

external validation datasets with the metrics generated from the confusion matrix being sensitivity, 

specificity, precision, and accuracy (Kuhn, 2020). 

 For each of the four models, variable importance plots were obtained in R using the Caret 

package (scaled from 0 to 100 as per Kuhn, 2020) to determine the important regions of each spectrum 

to discriminate between grass-fed and grain-fed beef. Thresholds were defined as the most important 

wavelengths in the NIR spectrum or wavenumbers in the Raman spectrum (importance > 40). 

 

3.2.5. Predictions of MSA marbling and DOF 

A linear regression model in R was used to assess the difference in marbling score between DOF groups 

(0, 100, 150 and 300), with DOF being the fixed effect. Partial least squares regression (PLSR) models 

(75% training, 25% validation) with resampling using cross-validation (10 buckets repeated 5 times) 

were used to develop prediction models of MSA marbling and DOF on the training dataset and then 

applied to the validation dataset. The optimal PLSR model (3 components) with the lowest root mean 
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square error of repeated cross-validation (RMSECV) was selected. The resulting prediction models were 

then used to determine the goodness-of-fit of the predictions against the observed values on the 

validation dataset using the Spectracus package in R (Fajardo et al., 2019). Goodness-of-fit of each 

PLSR model (NIRS and Raman of lean and fat) was assessed through the coefficient of determination 

(r2
val), root mean square error (RMSEval), residual prediction deviation (RPD) and bias of the external 

validation dataset (Williams et al., 2017).  
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3.3. Results 

Descriptive statistics of cut type, marbling and DOF are presented in Table 9. The mean marbling score 

was 692.6 and mean DOF was 95.8 days. Results of the linear regression model determined that 

marbling score was not significantly affected by feeding regime, where grain-fed beef had an MSA 

score of 726 ± 29.5 and grass-fed had an MSA score of 645 ± 32.7 (P = 0.07; data not shown). However, 

DOF affected MSA marbling with 150 DOF showing the lowest MSA marbling score and 1000 DOF 

showing the highest (P < 0.05; Table 9). 

 

Table 9. Descriptive statistics for days on feed (DOF) and Meat Standards Australia (MSA) marbling 

score. 

DOF (days) n Mean (± SEM) Marbling Minimum Marbling Maximum Marbling 

0 54 659.3 (16.04)c 400 800 

100 12 791.7 (66.10)b 400 1000 

150 23 465.2 (16.96)d 300 600 

300 19 1000 (0.00)a 1000 1000 
a, b c, d Superscripts with a different letter indicate a significant difference (P < 0.05). 

  

 The NIR spectral data were obtained and were found to be highly consistent, with no outliers 

found for lean or fat. Mean raw absorbance spectra for lean and fat of each feeding system is 

presented in Fig. 6. Grain-fed beef had greater absorbance than grass-fed beef across the entire 

spectrum for lean although the largest difference was beyond 1380 nm (Fig. 6a). For fat, grass-fed 

beef had greater reflectance than grain-fed beef at wavelengths shorter than 1350 nm, and grain-fed 

beef had greater reflectance at 1445 to 1470 nm (Fig. 6b). 

 Raman intensity spectra were obtained, and data cleaning was performed to remove outliers 

above distances of 20 on Hotelling-T2 plots formed following PCA modelling. High numbers of outliers 

were found for both lean (10.2%, n = 11) and fat (14%, n = 14). Mean cleaned Raman spectral data 

was presented in Fig. 2 for lean (Fig. 7a) and fat (Fig. 7b).
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Fig. 6. Mean near-infrared absorbance (log(1/R)) spectra of grass-fed and grain-fed beef for a) lean muscle tissue (n = 108) and b) fat tissue (n = 100). 
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Fig. 7. Mean cleaned (post-outlier removal) Raman spectra of grass-fed and grain-fed beef for a) lean tissue (n = 97) and b) fat tissue (n = 86). 
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 Model performance metrics indicated that the models performed nearly perfect on the 

training datasets with accuracies of 100% for both lean and fat using either NIR or Raman 

spectroscopy, regardless of PLS-DA or LDA, except for Raman on lean where it was 91–96% accurate 

(Table 10). However, model performance on the validation dataset was not as good with accuracy 

ranging between 65 and 95%; similar to the calibration dataset, Raman on lean showed significantly 

lower accuracy (65–69%) while other models showed accuracies above 80% (Table 10). 

 Model performance on the validation dataset indicated that discrimination between grass-fed 

and grain-fed on lean was more accurate with NIR spectroscopy compared to Raman spectroscopy, 

whereas discrimination accuracy of fat was greater using Raman (Table 10). Generally, sensitivity, 

specificity and precision were similar between NIR and Raman spectroscopy for fat, although NIRS was 

superior to Raman spectroscopy for lean (Table 10). Limited differences occurred for goodness-of-fit 

metrics between PLS-DA and LDA models, with LDA slightly better for NIR lean and fat spectra, and 

PLS-DA slightly better for Raman fat spectra. Raman scanning of lean showed PLS-DA to be superior 

to LDA in specificity and precision, though inferior in sensitivity and identical in accuracy (Table 10). 

Fat scanning using the NIRS was found to have excellent specificity and precision (100%) for 

differentiating grass-fed and grain-fed beef using PLS-DA and LDA, while lean scanning showed higher 

accuracy and sensitivity (>84%, Table 10). For Raman, all metrics were superior scanning fat compared 

to lean. 

 Modelling with PLS-DA indicated that the most important wavelengths for discriminant 

analyses occurred at the upper limits of the NIR spectrum for both lean and fat (1686–1700 nm), while 

other areas of high importance occurred at 954–994 nm, 1040–1070 nm, 1128–1162 nm, 1199–1225 

nm and 1391–1401 nm for lean, and 1388–1409 nm for fat. Raman spectroscopy showed more 

importance for differentiation between wavelengths of 762–782 cm-1 and 1864–1874 cm-1 for lean 

and 770–772 cm-1, 1820–1864 cm-1 and 2862 cm-1 for fat. 
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 The NIR spectrometer showed poor precision in predicting the MSA marbling score and DOF 

(r2
val < 0.35). Precision and accuracy were greatest for predicting DOF scanning fat with the Raman 

spectrometer, although these were still moderate (Table 11). 

 

Table 10. Discrimination between grass-fed and grain-fed beef following scanning of lean (n = 108) 

and fat (n = 100) surfaces using a smartphone NIR spectrometer and a portable Raman spectrometer 

using partial least square discriminant analysis (PLS-DA) and linear discriminant analysis (LDA) on the 

training (calibration) and validation datasets. 

 Calibration* dataset (n = 81) 
Model Sensitivity Specificity Precision Accuracy 

NIR Lean PLS-DA 1.000 1.000 1.000 1.000 
NIR Lean LDA 1.000 1.000 1.000 1.000 

NIR Fat PLS-DA 1.000 1.000 1.000 1.000 
NIR Fat LDA 1.000 1.000 1.000 1.000 

Raman Lean PLS-DA 0.934 0.956 0.969 0.959 
Raman Lean LDA 0.909 0.902 0.882 0.906 

Raman Fat PLS-DA 1.000 1.000 1.000 1.000 
Raman Fat LDA 1.000 1.000 1.000 1.000 

 Validation dataset (n = 27) 
 Sensitivity Specificity Precision Accuracy 

NIR Lean PLS-DA 0.846 0.923 0.917 0.885 
NIR Lean LDA 0.923 0.923 0.923 0.923 

NIR Fat PLS-DA 0.692 1.000 1.000 0.846 
NIR Fat LDA 0.769 1.000 1.000 0.885 

Raman Lean PLS-DA 0.500 0.846 0.714 0.695 
Raman Lean LDA 0.600 0.692 0.600 0.652 

Raman Fat PLS-DA 0.900 1.000 1.000 0.952 
Raman Fat LDA 0.900 0.818 0.818 0.859 

* Models directly applied to the training dataset. 
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Table 11. Goodness-of-fit of partial least squares regression (PLSR) models to predict marbling score 

(Marbling) and days on feed (DOF, days) using NIR and Raman spectroscopic analysis of lean (n = 108) 

and fat tissues (n = 100) of beef. * 

 

 
 
 

 

 

 

* Results shown for the validation dataset only.

Model r2
val RMSEval RPD Bias 

NIR Lean Marbling 0.162 623.6 0.374 -589.0 
NIR Lean DOF 0.320 97.61 1.145 0.737 

NIR Fat Marbling -0.045 257.9 0.941 13.05 
NIR Fat DOF -0.039 596.0 0.190 574.3 

Raman Lean Marbling <0.001 259.8 0.856 62.07 
Raman Lean DOF 0.134 632.5 0.187 616.9 

Raman Fat Marbling 0.010 619.6 0.385 -576.5 
Raman Fat DOF 0.468 83.00 1.330 31.74 
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3.4. Discussion 

The two spectrometers investigated in this pilot study showed high accuracy (> 85%) for the purposes 

of discrimination between grass- and grain-fed beef cuts using both PLS-DA and LDA, with the 

exception of Raman prediction models on lean with moderate accuracy (60–70%). The most promising 

finding of the study was that the smartphone NIR spectrometer, designed for consumer and retailer 

use, was able to differentiate grass-fed from grain-fed beef with high precision, sensitivity, specificity, 

and accuracy using PLS-DA and LDA. Its advantages compared to the Raman used include smaller size, 

lower cost, and easier connectivity to a smartphone instead of a laptop (Coombs et al., 2019; Dixit et 

al., 2020; Pham et al., 2018; Tang et al., 2020; Teixeira dos Santos, 2013), along with its more consistent 

spectra with no outliers detected in the present study. The presence of outliers for the Raman spectra 

may be due to the more difficult use of this bulkier instrument and the sensitivity to movements of 

the probe while scanning the samples compared to the NIRS. The Raman spectrometer required more 

extensive training for its use, in addition to more data cleaning post-scanning in the present study, 

which along with its higher cost rendered it less efficient. Possible explanations for greater accuracy 

of the NIR spectrometer include smoother spectra and the ability to detect larger differences between 

the spectra of both feeding systems. Findings from this study infer that grass-fed and grain-fed beef 

can be reliably discriminated from each other using a consumer grade smartphone spectrometer, 

irrespective of the cut used. 

 The majority of the differences between grass-fed and grain-fed beef occurred at the higher 

end of the NIR spectrum for lean (1400–1700 nm) but at shorter wavelengths for fat (900–1400 nm), 

the lean being similar to findings of Cozzolino et al. (2002) who scanned homogenised beef to 

discriminate between grass-fed and silage-fed beef with a benchtop NIRS of wider wavelength range 

(400–3500 nm) compared to the present study. Interestingly, the areas considered most important in 

the present study corresponded to areas of the greatest change in spectral reflectance rather than 

the largest separation between grass-fed and grain-fed spectra, except for the highest importance at 

1700 nm (data not shown). The 1700 nm region showed the greatest separation between spectra and 
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this region captures C-H bonds in fatty acids (Manley, 2014), with grain-fed lean tending to have 

greater fat content than grass-fed beef. The peaks identified in the mean NIR spectrum of lean beef in 

the present study were 960–980 and 1400–1450 nm, corresponding to –OH bonds and indicating 

water content (Cozzolino et al., 2002; Delpy & Cope, 1997; Manley, 2014; Prieto et al., 2011). Another 

peak occurred between 1130 and 1270 nm corresponding to C-H bond vibrations, and differences in 

intramuscular fat (IMF) content or fatty acid profile (Prieto et al., 2011). These results suggest that fat 

content and composition may help differentiating grass-fed from grain-fed beef (Logan et al., 2020a). 

It is likely that cut selection of samples in the present study affected the marbling and thereby the fat 

content, and the use of one cut only in future studies may alleviate this (Logan et al., 2020a; Prieto et 

al., 2014a). However, the present study was designed to explore the potential value of these sensors 

across a range of cuts and marbling scores so that the experimental design justified a random selection 

of cuts. 

 The use of fat scanning in addition to lean to differentiate grain-fed and grass-fed beef showed 

similar and slightly improved results to those presented by Cozzolino et al. (2002) who used 

homogenised beef. The Raman spectrometer produced more accurate classification scanning fat 

compared to lean, likely due to the increased differences in spectral signatures of grass-fed and grain-

fed fat in the shorter half of the spectrum (< 1750 cm-1), with a more pronounced peak occurring 

between 1130 and 1270 cm-1 (C-H fat bonds) for Raman compared to lean surface scans. The NIR 

spectrometer produced negligible differences in discrimination accuracy between lean and fat. 

However, fat scans showed greater precision and specificity, likely due to the spectral differences 

between grass- and grain-fed beef occurring over longer wavelength ranges for fat (900–1350, 1400–

1520 nm) compared to lean (1400–1700 nm). 

 Previous research demonstrated differences in fatty acid profile that were picked up by 

Raman spectroscopy, with key shifts occurring at 1069, 1127, 1301 and 1445 cm-1 (Logan et al., 2020a). 

Similar differences were found in the present study using Raman, where the most notable differences 

between grass-fed and grain-fed were important between 760 and 780 cm-1 and between 1820 and 
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1860 cm-1 when fat was scanned. The latter shift corresponds to carbon-carbon double bonds 

(HORIBA, 2020), whereupon grass-fed beef showed higher C-C double bonding than grain-fed beef, 

which infers higher proportions of unsaturated fatty acids (Logan et al., 2020a). 

 Dian et al. (2008) obtained 89.1–98.6% accuracy in differentiating grass-fed and grain-fed lamb 

carcases, which was greater compared to the present study, through use of the visible spectrum 

(trimmed data from a vis-NIRS down to 400–700 nm) as opposed to the NIR spectrum (900–1700 nm). 

Carotenoid pigments are known to absorb light between 450 and 510 nm, within the visible spectrum, 

with this region producing higher absorbance in grass-fed beef (Knight et al., 2001; Prache & Thierez, 

1999; Realini et al., 2004). Measuring absorbance and the Commission Internationale de l'Eclairage 

(CIE) b* value (CIE, 1978) in fat using a colorimeter would likely produce strong differences between 

grass-fed and grain-fed beef and aid in their authentication (Aoriera et al., 2017; Dunne et al., 2009). 

A recent study using a spectrometer with a similar range showed predictions of CIE colour to be 

comparable to a benchtop laboratory-grade vis-NIRS with r2
val around 0.7 (Patel et al., 2021). 

Additionally, measurements of vitamin E, fatty acid profile, β-carotene and fat colour could further 

enhance grass-fed and grain-fed discrimination (Duckett et al., 2009; Logan et al., 2020a; Logan et al., 

2021a; Luciano et al., 2011). 

 Predictions of marbling score and days on feed were moderate to poor using both 

spectrometers, however it was promising that fat was a better predictor of DOF compared to lean, 

and lean was a better predictor of visual marbling score compared to fat. This likely occurred because 

fat content, increase of saturated fatty acids and decrease in carotenoid content, which affect the 

spectral signature of fat, are later maturing traits associated with longer DOF (Dunne et al., 2009). 

Scanning fat tissue could not infer greater amounts of IMF, which is scored visually on lean tissue 

(MLA, 2017a). Marbling score has not been traditionally predicted as well as chemical IMF, and the 

results of the present study reflect this and are comparable to earlier work using portable NIRS (900–

1700 nm) to predict marbling score or IMF on intact meat where r2
CV or r2

val < 0.30 (Coombs et al., 

2019; Dixit et al., 2020; Magalhães et al., 2018). Indeed, previous research demonstrated that the best 
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results for handheld NIRS to predict IMF resulted in r2
CV values between 0.5 and 0.67 (Fowler et al., 

2020; Pham et al., 2018). Care was taken in the present study to use a larger number of scans per 

sample than previously mentioned studies that encompassed a greater portion of the surface area of 

each steak, which was designed to improve predictions of marbling. The high bias found for the 

prediction of MSA marbling infers a lack of model precision which could have arisen due to the wide 

range of cuts of meat. 

 The fact that MSA and other marbling grading systems are subjective (Polkinghorne & 

Thompson, 2010) may have affected the accuracy of these predictions. The prediction of IMF would 

be a more accurate and objective measure, but marbling score is still the industry standard for beef 

quality in Australia (AUS-MEAT, 2018; MLA, 2017a). Nevertheless, promising results (r2
val ≥ 0.65) have 

been found previously for IMF prediction using portable vis-NIR spectrometers (350–2500 nm) in beef 

(Sun et al., 2011) and lamb (Dixit et al., 2020; Pullanagari et al., 2015). 

 The present study attempted to predict the length of time animals were fed a high-grain diet 

in a feedlot through DOF which is an important aspect for many consumers when making purchase 

decisions as it often infers Wagyu genetics and increased fat content, marbling and desirable flavours 

associated with these (Chapter 1; Frank et al., 2016; Logan et al., 2021b; Miller, 2020; Van Elswyk & 

McNeill, 2014). The predictions of DOF and marbling were made with the objective to infer whether 

fat content would lead to the high accuracy of discriminating grass- and grain-fed beef. However, the 

predictions of DOF were poor in the present study except for scanning of fat using the Raman 

spectrometer, which showed moderate precision. It is therefore recommended that future work 

should use larger datasets with staggered DOF samples across a wider range, such as 0, 70, 100, 150, 

300, 450 and 600 DOF. For instance, a recent study using Raman scanning subcutaneous fat was able 

to classify beef (n = 520) into different DOF groups (grass, grass + supplement, 70 and 100 DOF) at 

87.1% accuracy and 86.8% precision by multi-class PLS-DA instead of PLSR (Logan et al., 2021b), as 

was used in the present study. Fat proved to be a better predictor for DOF than lean for Raman, which 

may have occurred due to changes in the fatty acid profile with DOF (Logan et al., 2021b; Van Elswyk 
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& McNeill, 2014). Fat colour would be expected to be lighter from longer grain feeding durations due 

to decreased β-carotene derived from pasture feeding (Duckett et al., 2009; Logan et al., 2020a). 

However, the spectrometers used in the present study do not measure reflectance in the visible range 

and that may explain the low accuracy for predicting DOF. 

 Despite similar prediction results for differentiating grass-fed and grain-fed beef by both 

spectrometers, the results of the present study indicate that NIRS showed greater ability to 

differentiate grass-fed and grain-fed beef without the need for data cleaning. The scientific 

discrimination methods presented in this paper could save time and costs, eliminating the need for 

chemical analysis to authenticate or certify meat products (Xu et al., 2020). This could combat 

mislabelling of beef as grass-fed when it may in fact be finished on grain, or the other way around. 

However, the predictions of DOF and marbling score were not sufficiently accurate for either industry 

or retail applications (Barlocco et al., 2006; Williams et al., 2017). 

 Raman spectroscopy was not able to produce greater spectral differences between grass-fed 

and grain-fed lean compared to NIRS. However, its ability to discriminate accurately following fat 

scanning was comparable to NIRS after data cleaning, which was required due to the high variability 

of Raman spectra within and between samples. The PLS-DA accuracy of Raman in the present study 

was comparable to recent findings scanning fat (85–96%; Logan et al., 2021b) although lean was less 

accurate for discrimination purposes, being 69.5% compared to 96.5–98.5% (Logan et al., 2020b; 

Logan et al., 2021a). Similarly, precision for fat using PLS-DA in both the present study and Logan et 

al. (2021b) was 100%. For future work with Raman, care would need to be taken when scanning to 

reduce analytical variability because Raman spectral scans recorded in the OPUS software are 

averages of the total number of scans and therefore, one being incorrect may compromise the entire 

sample. This was also reflected in the high number of outliers, which were not detected in recent 

studies (Logan et al., 2020b; Logan et al., 2021a) This finding shows that operator experience and 

usage may affect the results and training operators on using Raman spectroscopy correctly would be 
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needed to avoid fluorescence reflection from raw samples, which in turn affects the amount of sub-

samples (Qiao & van Kempen, 2004). 

 

3.5. Conclusions 

The present preliminary study highlighted the potential for vibrational spectroscopic devices to 

classify beef as grass-fed or grain-fed, with particularly promising results for the low-cost, smartphone 

NIR spectrometer. The high variability of Raman spectroscopy indicated the need for further research 

in the field to refine both the technology and scanning technique as these likely affected the prediction 

models. Marbling score could not be predicted accurately with either spectrometer used in the 

present trial. The NIR spectrometer proved to be a better predictor than the Raman spectrometer for 

feeding regime when scanning lean, though the reverse was true when scanning fat. The NIR sensor 

was better at predicting both DOF and marbling score using fat and lean scanning, compared to 

Raman. The lower number of outliers, lower cost, smaller size, and smartphone connection of the 

consumer grade NIR spectrometer makes it an attractive proposition for authentication and 

differentiation of grass-fed and grain-fed beef at a retail level which can improve consumer 

confidence.  
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4. Differentiation of sheep and cattle internal organs using visible 

and short-wave infrared hyperspectral imaging 
 

Abstract. Automatic identification and sorting of livestock organs in the meat processing industry 

could reduce costs and improve efficiency. Two hyperspectral sensors encompassing the visible (400–

900 nm) and short-wave infrared (900–1700 nm) spectra were used to identify the organs by type. A 

total of 104 parenchymatous organs of cattle and sheep (heart, kidney, liver and lung) were scanned 

in a multi-sensory system which encompassed both sensors along a conveyor belt. Spectral data was 

obtained and averaged following manual mark-up of 3 to 8 regions of interest of each organ. Two 

methods were evaluated to classify organs: partial least squares discriminant analysis (PLS-DA) and 

random forest (RF). In addition, classification models were obtained with the smoothed reflectance 

and absorbance, and the first and second derivatives of the spectra to assess if one was superior to 

the rest. The in-sample accuracy for the visible, short-wave infrared, and combination of both sensors 

was higher for PLS-DA compared to RF. The accuracy of the classification models was not significantly 

different between data pre-processing methods or between visible and short-wave infrared sensors. 

Hyperspectral sensors seem promising to identify organs from slaughtered animals which could be 

useful for the automation of quality and process control in the food supply chain such as abattoirs.  
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4.1. Introduction 

The routine differentiation of livestock organs at abattoirs by meat inspectors occurs based on organ 

type combined with the gross exclusion diagnosis of potential diseases rendering offal safe for human 

consumption by trained meat inspectors and a supervising veterinarian (Wilson et al., 2019). This 

differentiation is a manual labour-intensive process and includes the potential for human error. 

Automation of the post-mortem process in abattoirs has been trialled in previous studies using non-

contact and non-invasive imaging methods including X-ray attenuation, computed tomography (CT), 

and hyperspectral (HS) imaging for livestock body composition analysis (Elmasry et al., 2012a; Scholz 

et al., 2015). Such systems have allowed for meat and organs to not be destroyed or contaminated 

during analysis, with rapid on-line technologies providing instant feedback at processor chain speed 

and no need for sample preparation or external transportation (Elmasry et al., 2012a; Scholz et al., 

2015; Teixeira dos Santos et al., 2013). However, these non-invasive imaging systems generate 

extensive data which require pre-processing methods and algorithm development to be sufficiently 

accurate and efficient for use in industry (Elmasry et al., 2012a; Scholz et al., 2015). 

 The characteristics, analysis, and applications of spectral imagery in meat quality evaluation 

were comprehensively reviewed by Elmasry et al. (2012a), who concluded that HS imaging systems 

can be used successfully as quality control tools in meat processing industries. Hyperspectral imaging 

measures the reflectance of light in multiple narrow bands along the light spectrum and has shown 

great potential in animal industries (Kumar et al., 2016; Xu & Sun, 2017). These HS technologies can 

be split into fractions of visible (VIS; 400–900 nm) and short-wave infrared (SWIR; 900–1700 nm). In 

the agriculture sector, HS has been used for prediction of quality, safety, contamination detection, 

microbial spoilage, and chemical composition of fruits, cereal grains, animal feed and meat (Baeten et 

al., 2007; Cheng & Sun, 2015; Huang et al., 2014a; Kamruzzaman et al., 2012a). The spectral data 

downloaded from HS devices are compared between two objects of interest, which can be 

differentiated based on differing spectral signatures by peaks or differing intensities at certain 
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wavelengths, with classification occurring through development of prediction models (Huang et al., 

2014a). 

 In the sphere of organs, differentiation and segmentation has occurred based on different 

spectral intensities of porcine arteries, veins and organs including liver and colon (Akbari et al., 2009), 

and five tissues (peritoneum, urinary bladder, spleen, small intestine and colon) during open 

exploratory surgery on a pig (Akbari et al., 2008). However, these studies were limited by a sample 

size of one animal and no further studies have attempted to differentiate animal organs by type. 

Despite this, studies examining HS sensors have successfully used seven SWIR wavelengths to 

differentiate offal from lamb muscle (Kamruzzaman et al., 2014), and similarly three VIS and two SWIR 

wavelengths to differentiate beef from chicken in mince mixtures (Kamruzzaman et al., 2015). In 

addition, a benchtop spectrometer containing VIS and SWIR sensors were successful to differentiate 

beef, lamb, pork, and chicken meats from one another (Cozzolino & Murray, 2004). 

 Different data pre-processing and machine learning methods to analyse spectral data are 

common (Zeaiter et al., 2005). However, the comparison of methods is rare in scientific literature, and 

it is unclear which methods may be superior. For instance, several studies use absorbance instead of 

reflectance data (Lanza, 1983), others use first- and second-order derivatives to capture changes in 

the spectra (Ritthiruangdej et al., 2011), and others have combined these with smoothing of the 

spectra such as centred moving average, multiplicative scatter correction (MSC), detrending, standard 

normal variate (SNV) or Savitzky-Golay filtering (Savitzky & Golay, 1964) to reduce non-chemical 

background and baseline signals from spectra (Huang et al., 2014a; Prieto et al., 2017; Zeaiter et al., 

2005). Kamruzzaman et al. (2012b) used centred moving average of reflectance spectra and found no 

improvements with derivatives, MSC and SNV, while Kamruzzaman et al. (2015) concluded that raw 

absorbance spectra were optimal. 

 The aims of the present study were to: 1) investigate the differences between livestock organs 

in spectral signatures generated from VIS and SWIR imagery; 2) explore the potential of these to 

differentiate bovine and ovine parenchymatous organs (heart, kidney, liver, and lung); and 3) evaluate 
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the effect of different data pre-processing techniques and machine learning methods on the accuracy 

of organ classification. Both reflectance and absorbance data, and their first and second derivatives 

as pre-processing methods, were used as predictors with partial least squares discriminant analysis 

(PLS-DA) and random forest (RF) algorithms. It was hypothesised that a multi-sensory platform could 

provide a spectral profile of individual organs that can be used for development of discrimination 

algorithms for the automation of this process into food safety and quality control in the red meat 

industry.  
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4.2. Materials and Methods 

No animals were slaughtered for the purpose of this study, with offal being obtained from an abattoir 

and a butcher. Therefore, animal ethics approval was not required. 

 

4.2.1. Sample collection and scanning procedure 

A total of 104 parenchymatous bovine and ovine organs were collected from a collaborating abattoir 

and local butcher and maintained at refrigerator temperatures (1–4 °C) prior to scanning (Table 12). 

The organs included in this study were heart (n = 33), kidney (n = 20), liver (n = 29) and lung (n = 20). 

 A prototype multi-sensory platform consisting of dual-view multi-energy X-ray and a VIS and 

SWIR HS imaging system (Rapiscan Inspection System AK198, Rapiscan Systems Pte Ltd., Singapore) 

connected to a Cube computer running Ubuntu (Linux OS) was used for the imaging of the organs (Fig. 

8). Organs were placed in a sealed tray with a transparent acrylic lid to ensure HS penetration and 

double containment, which was placed within protective lead curtains for scanning. A conveyor 

transported the samples from end to end (6.64 s for 1260 mm, 189.8 m/s) with both sides protected 

by lead shielding while X-rays were on. The X-rays (2 x 160 keV tungsten tubes), light-emitting diode 

(LED) strip lamp (VIS) and a quartz infrared (QIR) lamp (SWIR) provided light sources for the HS sensors.  
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Fig. 8. Rapiscan multi-sensory imaging system used to scan livestock parenchymatous organs. A) The 

external view of the complete prototype imaging system (AK198). B) A schematic showing placement 

of the hyperspectral sensors within the imaging system. Source: Rapiscan Systems Pte Ltd. 

 

 The HS imaging system consisted of two sensors covering the spectral ranges from 400–900 

nm (VIS) and 900–1700 nm (SWIR). The VIS (Basler Ace GigE, Photonic Science, East Sussex, UK) and 

SWIR (Snake A/C GigE v3 AK081, Photonic Science, East Sussex, UK) sensors were powered by 12 V 

power supply units and fitted with Specim spectrographs (VNIR V10E and NIR V17E, respectively) and 

a Grade 1 InGaAs detector with air cooled housing. Spectral resolutions were 3 and 5 nm for VIS and 

SWIR, respectively, with both sensors capturing 200 spectral slices per second. Exposure time, image 

size (width, length, offset) and acquisition rate were controlled by Ubuntu (Linux OS) computer 

programs (eBUSPlayer SDK, Pleora Technologies, Kanata, Canada) and stream2camstodisk command 

line (B. E. Allman, personal communication May 19, 2020) in the Aravis environment of Linux. Spectral 

increment was approximately 1.5 nm between contiguous bands, with 300 bands for VIS and 512 for 

SWIR. The VIS sensor had a 1920 x 1200 (spectral x spatial) pixel sensor, spectral binned four times 

and offset 70 pixels, spatial dimension was not binned, and offset was 550 pixels, equalling 300 bands. 

The SWIR sensor had a 640 x 512 (spatial x spectral) pixel sensor, offset by 64 pixels and the area 

captured was 256 pixels. These dimensions were chosen in order to get 150 frames per second (fps) 

A) B) 

Visible HS sensor 

SWIR HS sensor 

X-ray and light source 

45° mirror 
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for both HS sensors. Exposure times were calculated from 150 Hz, resulting in a 6.666 ms refresh rate, 

so exposure times were 6.4 ms for VIS and 4 ms for SWIR to download data at this refresh rate. 

  

4.2.2. Extraction and analysis of spectral data 

Scanned images (PNG format) trimmed to comprise the tray containing organ samples were 

constructed from 200–400 frames generated by the HS sensors using MATLAB programming language 

(MATLAB R2021a, Mathworks Inc., USA). ImageJ (version 1.53a; National Institutes of Health, 

Bethesda, MD) was used to mark-up regions of interest (ROI) with 7 x 7 pixels in size upon each 

complete organ image avoiding visible fat. Three to eight ROI were marked-up upon each organ 

depending on the organ’s size, with larger organs having more ROI than smaller organs. Gnu Image 

Manipulation Program software (version 2.10.18; GIMP Development Team, 2020) was used for image 

viewing and manipulation to obtain pixel values of the ROI, which were then written into a MATLAB 

algorithm developed by B. E. Allman (personal communication, February 11, 2021) to obtain 

reflectance spectra for each image. Output spectral data (VIS and SWIR) were averaged per organ. 

  

4.2.3. Data processing and outlier removal 

Mean reflectance HS data per organ were imported into R software (R Core Team, 2020). Both VIS and 

SWIR spectra were subjected to a principal components analysis (PCA) model as per Logan et al. 

(2020). Each dataset was independently visualised using PCA (Q residuals and Hotelling T2 values) with 

2 components using the mdatools package (Kucheryavskiy, 2020) to detect outliers defined as 

observations with orthogonal and score distances > 20 on the residual plot (Kucheryavskiy, 2021). 

Three outliers were detected and removed from VIS and one from SWIR (Table 12). Subsequently, all 

datasets were trimmed manually to remove machine artifact effects at the start and end of each 

spectrum which presented as flat regions. The final spectra for analysis contained wavelengths from 

470.5 to 800.5 nm for VIS and 1000.5 to 1600.5 nm for SWIR. A combination dataset (COMB) was 

created by merging the trimmed VIS and SWIR spectra. To smooth the spectra and avoid spectral 
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noise, trimmed centred moving average equations were used with a window length of 5 and 20% trim 

for VIS, whereas SWIR and COMB used a window length of 11 and 10% trim. Cubic polynomial Savitzky-

Golay filters (Savitzky & Golay, 1964; Stevens & Ramirez-Lopez, 2020) with identical window lengths 

were also fitted but did not smooth the spectra as effectively as centred moving average and were 

therefore not considered. Both reflectance (R) and absorbance (A = 1/log(R) as per Lanza, 1983) 

spectra were subsequently pre-processed using first (d1) and second (d2) derivatives, with all these 

datasets used to develop subsequent classification models of the organs. All spectral datasets (R, Rd1, 

Rd2, A, Ad1, Ad2 for VIS, SWIR and COMB) were centred and scaled before model development. Data 

processing was implemented using the tidyverse suite of packages (Wickham et al., 2019). 

 

Table 12. Description and number of bovine and ovine parenchymatous organs used to develop 

automatic identification algorithms from visible (VIS) and short-wave infrared (SWIR) hyperspectral 

sensors following removal of outliers. 

Organ type VIS SWIR COMB 

Heart 32 32 31 
Kidney 20 20 20 
Liver 28 29 28 
Lung 21 22 21 
Total 101 103 100 

 

4.2.4. Statistical modelling 

4.2.4.1. Classification model development 

Classification models using spectral data from three datasets (VIS, SWIR, COMB) and six pre-processing 

treatments (R, Rd1, Rd2, A, Ad1, Ad2) were tuned using leave-one-out cross-validation (LOOCV). The 

choice of LOOCV was primarily due to the relatively low sample sizes. The PLS-DA and RF methods 

used the pls and randomForest functions within the Caret package (Kuhn, 2020) to differentiate organ 

type. Model metrics for goodness-of-fit were evaluated using the multi-class summary in the Caret 

package (Kuhn, 2020). Model tuning was achieved using a number of components (ncomp) ranging 
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from 1 to 25 for PLS-DA and number of variables available for splitting at each tree node (mtry) 

between 300 to 500 for RF (Kuhn, 2008; Liaw & Wiener, 2002), based on the highest accuracy and the 

lowest log loss, respectively, on the LOOCV data. Plots for ncomp were visually assessed for the 

minimal ncomp to reach the peak in order to prevent overfitting of PLS-DA models. After the optimal 

tuning parameters were obtained, the final model was run using the pls package (Mevik et al., 2020). 

 Accuracy, precision, sensitivity, specificity and coefficient of agreement (Kappa) were the 

model metrics obtained by resampling the PLS-DA and RF discrimination models using LOOCV 

(Williams, 2001; Williams et al., 2019). The best model among all datasets with six pre-treatments was 

selected based on LOOCV accuracy and Kappa for determination of the in-sample accuracy (Kuhn, 

2008). Following this, the sensitivity, specificity, precision and balanced accuracy were obtained per 

organ and HS sensor following PLS-DA and RF modelling. Sensitivity corresponds to the inverse of the 

out of bag error for each organ. Wavelength variable importance (scaled from 0 to 100) of the COMB 

dataset was determined using the varImp function in the Caret package (Kuhn, 2020). 

4.2.4.2. Principal components analysis model development 

 Principal components analysis (PCA) modelling of the three datasets was completed and 

visualised using the R package ggfortify (Horikoshi & Tang, 2016; Tang et al., 2016).  
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4.3. Results 

4.3.1. Reflectance spectroscopy 

Visible reflectance spectra for the four organs are shown in Fig. 9a, with heart and lung showing 

greater reflectance compared to liver and kidney across the range between 500 and 850 nm. Liver and 

kidney had similar spectral signatures throughout the VIS spectrum except between 500 and 600 nm 

where kidneys had slightly greater intensity. Similarly, hearts showed greater intensity compared to 

lungs between 500 and 600 nm but both organs showed similar intensity between 600 and 850 nm. 

Much stronger separation of the spectra occurred in the SWIR region, particularly between 1050 to 

1300 nm where lung showed greater reflectance than heart, followed by liver and finally kidney with 

the lowest intensity (Fig. 9b). 
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Fig. 9. Trimmed centred moving average a) visible (470.5–800.5 nm); and b) short-wave infrared 

(1000.5–1600.5 nm) spectra for livestock organs by organ type (heart, kidney, liver, and lung). 
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4.3.2. Partial least squares discriminant analysis 

4.3.2.1. Visible spectra 

Classification results of the different mathematical pre-processing methods using PLS-DA are shown 

in Table 13. For VIS spectra, absorbance (A) was selected as the best model because it showed 88% 

accuracy and 84% Kappa on the LOOCV dataset (ncomp = 9) for PLS-DA. However, the accuracy of 

reflectance (R) was similar to A. The in-sample accuracy for A was 96% with only four samples 

misclassified (Table 14). First and second derivatives of R and A yielded slightly lower accuracy 

compared to the raw data. All hearts were correctly classified using the VIS spectra along with 18 of 

20 kidneys, 27 of 28 livers, and 20 of 21 lungs (Table 14). 

 

4.3.2.2. SWIR spectra 

For SWIR spectra, first derivative of absorbance (Ad1) was selected for PLS-DA because of the highest 

accuracy on the LOOCV dataset (accuracy 92%, Kappa 90%, ncomp = 21), although this did not differ 

from raw A or second derivative of A of the SWIR spectra (Table 13). In-sample accuracy of 98-99% 

indicated overfitting therefore ncomp was reduced to 6 where accuracy was slightly reduced to 88%. 

Three hearts were misclassified as lungs, four lungs as livers and two livers as kidneys (Table 14). 

 

4.3.2.3. Combination VIS and SWIR spectra 

Combination of VIS and SWIR spectra resulted in very high overfitting where all datasets resulted in 

100% in-sample accuracy and all ncomp ≥ 16 (Table 13). The ncomp was reduced to 6 giving in-sample 

accuracies ranging from 79 to 93% (data not shown). The Ad1 treatment was selected as it had the 

highest LOOCV accuracy (88%) and PLS-DA modelling of COMB data correctly classified all 28 livers, 28 

of 31 hearts, 18 of 20 kidneys, and 19 of 21 lungs (Table 14).  
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Table 13. Partial least squares discriminant analysis (PLS-DA) classification accuracy and coefficient of 

agreement (Kappa, κ) from visible (VIS), short-wave infrared (SWIR) and combination VIS and SWIR 

(COMB) hyperspectral sensors to differentiate bovine and ovine hearts, kidneys, livers, and lungs using 

various pre-processing methods on the leave-one-out cross-validation (LOOCV) and in-sample 

datasets. 

Spectra 
 LOOCV dataset In-sample dataset 

ncomp1 Precision Accuracy κ Accuracy κ 

VIS       
  R 11 0.87 0.87 0.83 0.96 0.95 
  Rd1 16 0.85 0.85 0.80 1.00 1.00 
  Rd2 6 0.77 0.78 0.70 0.90 0.87 
  A 9 0.88 0.88 0.84 0.96 0.95 
  Ad1 11 0.86 0.86 0.81 0.99 0.99 
  Ad2 9 0.81 0.82 0.76 0.96 0.95 
  Afinal 9 0.88 0.88 0.84 0.96 0.95 
SWIR       
  R 24 0.91 0.91 0.88 0.99 0.99 
  Rd1 20 0.91 0.90 0.87 0.99 0.99 
  Rd2 18 0.91 0.91 0.88 0.99 0.99 
  A 24 0.92 0.92 0.90 0.98 0.97 
  Ad1 21 0.92 0.92 0.90 0.98 0.97 
  Ad2 18 0.92 0.92 0.90 0.98 0.97 
  Afinal 6 0.92 0.92 0.90 0.88 0.84 
COMB       
  R 21 0.94 0.94 0.92 1.00 1.00 
  Rd1 24 0.97 0.97 0.96 1.00 1.00 
  Rd2 20 0.98 0.97 0.96 1.00 1.00 
  A 22 0.94 0.94 0.92 1.00 1.00 
  Ad1 19 0.98 0.98 0.97 1.00 1.00 
  Ad2 16 0.96 0.96 0.95 1.00 1.00 
  Afinal 6 0.88 0.88 0.84 0.93 0.91 

1 number of components selected for PLS-DA; R – reflectance; Rd1 – first derivative of reflectance; 

Rd2 – second derivative of reflectance; A – absorbance; Ad1 – first derivative of absorbance; Ad2 – 

second derivative of absorbance; bold indicates the dataset used for reduced ncomp and 

subsequent determination (Afinal or Rfinal).  
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Table 14. Performance of visible (VIS), short-wave infrared (SWIR) and combination VIS and SWIR 

(COMB) hyperspectral sensors in identifying the type of organs using partial least squares discriminant 

analysis on the in-sample dataset. 

Spectra 

Predicted number of each organ 

Heart Kidney Liver Lung 

VIS     
Heart 32 1 0 0 
Kidney 0 18 0 0 
Liver 0 1 27 1 
Lung 0 0 1 20 
Accuracy (%) 100 90 96 95 

SWIR     
Heart 28 0 0 1 
Kidney 1 19 2 0 
Liver 0 1 27 4 
Lung 3 0 0 17 
Accuracy (%) 88 95 93 77 

COMB     
Heart 28 1 0 0 
Kidney 1 18 0 0 
Liver 0 1 28 2 
Lung 2 0 0 19 
Accuracy (%) 90 90 100 90 

 

 

 Table 15 shows the goodness-of-fit metrics for VIS, SWIR and COMB for all organs. All metrics 

across organs ranged between 77 and 100% with VIS producing better results than SWIR, being 90% 

or more across metrics. Hearts and livers were the best classified organs by VIS and COMB, showing 

sensitivity, specificity, precision and accuracy above 90%. On the other hand, SWIR showed the 

greatest accuracy and sensitivity in classifying kidneys.  
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Table 15. Livestock organ classification from hyperspectral sensors using partial least squares 

discriminant analysis (PLS-DA) for visible (VIS), short-wave infrared (SWIR) and combination VIS and 

SWIR (COMB) hyperspectral sensors on the in-sample dataset. 

VIS (A) Heart Kidney Liver Lung 

  Sensitivity 1.00 0.90 0.96 0.95 
  Specificity 0.99 1.00 0.97 0.99 
  Precision 0.97 1.00 0.93 0.95 
  Accuracy 0.99 0.95 0.97 0.97 
SWIR (Ad1)     
  Sensitivity 0.88 0.95 0.93 0.77 
  Specificity 0.99 0.96 0.93 0.96 
  Precision 0.97 0.86 0.84 0.85 
  Accuracy 0.93 0.96 0.93 0.87 
COMB (Ad1)     
  Sensitivity 0.90 0.90 1.00 0.90 
  Specificity 0.99 0.99 0.96 0.97 
  Precision 0.97 0.95 0.90 0.90 
  Accuracy 0.94 0.94 0.98 0.94 

(A) - raw absorbance data; (Ad1) – first derivative of absorbance data. These data were 
selected due to the highest accuracy on the LOOCV dataset (Table 13). 

 

4.3.2.4. Variable importance for PLS-DA 

Variable importance for PLS-DA predictions of each organ type by combined spectral model (VIS and 

SWIR using Ad1 pre-processing) is shown in Fig. 10. Hearts showed the greatest importance at 540 

nm; kidneys at 780 and 1100 nm; livers at 580 and 780 nm; and lungs at 580–600 nm. Livers showed 

greater variable importance peaks than lungs and kidneys, which in turn were generally higher than 

hearts, although hearts tended to exhibit more stability across the spectra. 
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Fig. 10. Variable importance for combination of visible (470.5–800.5 nm) and short-wave infrared 

(1000.5–1600.5 nm) spectra using partial least squares discriminant analysis to identify bovine and 

ovine organs by type. 

 

4.3.3. Random forest 

4.3.3.1. Random forest modelling on VIS, SWIR and COMB 

For RF, SWIR and COMB had Ad1 selected with the highest accuracy on the LOOCV dataset (all ≥ 85%) 

however the accuracy across different datasets showed an accuracy between 68 and 89% (Table 16). 

Visible HS data had Rd2 selected with the highest accuracy on the LOOCV dataset. The mtry ranged 

from 310 to 490 with no overfitting. In-sample accuracies were slightly less than accuracies on the 

LOOCV dataset for all spectral data. Misclassification occurred by all spectra for each organ type (Table 

17). Table 17 shows overall accuracies to be highest for livers using SWIR and COMB, and for hearts 

using VIS data. Table 18 shows the RF in-sample classification metrics of organ type, where livers were 

the best classified overall by RF (sensitivity > 89%, accuracy > 90%). However, hearts showed greater 
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sensitivity and equal accuracy and precision than livers by RF using VIS data. Lungs were the least 

correctly classified organ regardless of spectral data. However, all sensitivities and balanced accuracies 

were greater than or equal to 80% regardless of organ. 

 

Table 16. Random forest algorithm classification accuracy and coefficient of agreement (Kappa, κ) 

from visible (VIS), short-wave infrared (SWIR) and combination VIS and SWIR (COMB) hyperspectral 

sensors to differentiate bovine and ovine hearts, kidneys, livers, and lungs on the leave-one-out cross-

validation (LOOCV) and in-sample datasets. 

Spectra 
 LOOCV dataset In-sample dataset 

mtry Precision Accuracy κ Accuracy κ 

VIS       
  R 410 0.72 0.72 0.62 0.69 0.58 
  Rd1 310 0.80 0.81 0.75 0.80 0.73 
  Rd2 480 0.87 0.86 0.81 0.84 0.78 
  A 480 0.71 0.72 0.62 0.68 0.57 
  Ad1 440 0.86 0.85 0.80 0.82 0.76 
  Ad2 450 0.82 0.81 0.75 0.80 0.73 
SWIR       
  R 320 0.82 0.82 0.75 0.81 0.74 
  Rd1 500 0.84 0.83 0.78 0.82 0.75 
  Rd2 340 0.83 0.83 0.78 0.84 0.79 
  A 330 0.82 0.82 0.75 0.82 0.75 
  Ad1 490 0.86 0.85 0.80 0.84 0.79 
  Ad2 370 0.83 0.83 0.78 0.83 0.76 
COMB       
  R 310 0.83 0.83 0.77 0.83 0.77 
  Rd1 460 0.87 0.87 0.82 0.85 0.80 
  Rd2 440 0.86 0.86 0.81 0.82 0.76 
  A 390 0.84 0.84 0.78 0.82 0.76 
  Ad1 450 0.90 0.89 0.85 0.87 0.82 
  Ad2 310 0.86 0.85 0.80 0.85 0.80 

mtry – number of nodes available for random sampling at each split when developing tree models; R 
– reflectance; Rd1 – first derivative of reflectance; Rd2 – second derivative of reflectance; A – 
absorbance; Ad1 – first derivative of absorbance; Ad2 – second derivative of absorbance; bold 
indicates the dataset used for final determination.  
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Table 17. Livestock organ classification from hyperspectral sensors using random forest (RF) 

classification for visible (VIS), short-wave infrared (SWIR) and combination VIS and SWIR (COMB) 

hyperspectral sensors on the in-sample dataset. 

Spectra 
Predicted number of each organ 

Heart Kidney Liver Lung 

VIS     
Heart 29 1 1 4 
Kidney 0 16 2 1 
Liver 1 3 25 1 
Lung 2 0 0 15 
Accuracy (%) 91 80 89 71 

SWIR     
Heart 27 2 0 0 
Kidney 2 17 0 0 
Liver 0 1 27 6 
Lung 3 0 2 16 
Accuracy 84 85 93 73 

COMB     
Heart 27 1 0 3 
Kidney 0 17 0 0 
Liver 0 2 27 2 
Lung 4 0 1 16 
Accuracy (%) 87 85 96 76 
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Table 18. Random forest model metrics per organ for visible (VIS), short-wave infrared (SWIR) and 

combination VIS and SWIR (COMB) hyperspectral sensors on the in-sample dataset. 

VIS (Rd2) Heart Kidney Liver Lung 

  Sensitivity 0.91 0.80 0.89 0.71 
  Specificity 0.91 0.96 0.93 0.98 
  Precision 0.83 0.84 0.83 0.88 
  Accuracy 0.91 0.88 0.91 0.84 
SWIR (Ad1)     
  Sensitivity 0.84 0.85 0.93 0.73 
  Specificity 0.97 0.98 0.91 0.94 
  Precision 0.93 0.89 0.79 0.76 
  Accuracy 0.91 0.91 0.92 0.83 
COMB (Ad1)     
  Sensitivity 0.87 0.85 0.96 0.76 
  Specificity 0.94 1.00 0.94 0.94 
  Precision 0.87 1.00 0.87 0.76 
  Accuracy 0.91 0.93 0.95 0.85 

(Rd2) – second derivative of reflectance data was selected; (Ad1) – first derivative of absorbance 
data was selected. These data were selected due to the highest accuracy on the LOOCV dataset 
(Table 16).  
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4.3.3.2. Random forest variable importance 

Combination VIS and SWIR (Ad1 pre-processing) variable importance of RF modelling is shown in Fig. 

11 on an overall basis rather than by organ types. In comparison to the PLS-DA clearer peaks were 

seen across the VIS and SWIR spectra at 590–600, 740–780, 1080–1140, and 1180–1200 nm. 

 

 

Fig. 11. Variable importance for combination of visible (470.5–800.5 nm) and short-wave infrared 

(1000.5–1600.5 nm) spectra using random forest modelling to identify bovine and ovine organs by 

type. 

 

4.3.4. Principal components analysis 

 The PCA score plots for PC1 against PC2 for Ad1 data were selected for both VIS and SWIR 

spectra because this series resulted in the highest accuracy. Fig. 12 visually demonstrates that the 

datapoints cluster together for each organ type. The PCA showed similar results to PLS-DA and RF, 

where different organs showed different spectral features for identification and hearts tended to be 

the most clustered organ with the least overlapping. 
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Fig. 12. Principal components analysis (PC1 vs. PC2) plots for the first derivative of absorbance 

hyperspectral data of a) visible (VIS); b) short-wave infrared (SWIR); and c) combination VIS and SWIR 

spectra for classification of bovine and ovine parenchymatous organs by type.  

b) 

c) 

a) 
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4.4. Discussion 

The objective of the present study was to explore the potential of VIS and SWIR hyperspectral data to 

classify parenchymatous organs by type (heart, kidney, liver and lung), to assess the suitability of 

different data pre-processing techniques for HS data, and to compare RF modelling with the more 

conventionally used PLS-DA. This study was an exploration of the use of HS imaging in organ 

identification and inspection within the meat processing industry, potentially leading to automation 

and quality control. Results demonstrated that automated classification for organ type could be done 

correctly 95% of the time for VIS and 87% for SWIR using PLS-DA without overfitting. These, in addition 

to the RF accuracy of 85% for automated classification using the combination of VIS and SWIR sensors, 

highlights the promise for potential uses of a multi-sensory platform in the beef and sheep meat 

industries. Potential applications include automated animal organ identification and sorting, 

processing using robotics, and quality assurance replacing tedious manual procedures normally done 

manually by meat inspectors and veterinarians (Webber et al., 2012). However, it is important to note 

that the present study dealt with classification of organs from both sheep and cattle together. The 

objective of the present study was to differentiate organs independent of origin. However, it is 

important to note that large-scale processing plants or abattoirs either slaughter one or the other 

species, whereas smaller ones often slaughter both species. The differentiation of species using HS 

sensors is a potential avenue of exploration, though was not undertaken in the present study because 

it was not the objective. 

 Both VIS and SWIR sensors produced similar accuracy to classify organs by type although VIS 

was slightly better and more consistent across pre-processing and classification methods. It was 

expected that SWIR would be superior given it comprises a good portion of the near-infrared spectrum 

which is known to be able to detect C-H and N-H bonds (Osborne et al., 1993; Prieto et al., 2017). 

Results from Baeten et al. (2007) and Kamruzzaman et al. (2014) showed SWIR to perform superior to 

VIS regions to differentiate fruits and agri-food, and the amount of offal addition to a meat mixture, 

respectively. However, these studies used only one HS sensor encompassing both regions and one 
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classification method (PLS-DA) was used in these studies. The combination of the two spectral regions 

(VIS and SWIR) in portable and benchtop devices were also promising in studies of meat quality (Prieto 

et al., 2014a; Prieto et al., 2017) and microbial spoilage in fish fillets (Cheng & Sun, 2015). The use of 

such non-invasive devices in the meat processing industry has been hailed for a long period (Scholz et 

al., 2015). However, a lack of consistent accuracy, particularly for quality traits, in conjunction with 

the high costs of installation, has held such technologies back from industry adoption (Dixit et al., 

2017; Prieto et al., 2017). The present study presents a different application for such technologies, 

whereupon organ differentiation can take place objectively within the abattoir and the cost of 

qualified staff could offset the installation and maintenance cost of the multi-sensory platform. 

Furthermore, such a platform could also add further value to the data collected by predicting chemical 

composition, quality control, and detection of health issues as demonstrated in other studies (Ariana 

& Lu, 2008; Kamruzzaman et al., 2012a; 2012b; Yang et al., 2009). 

 A novel aspect of the present study was the use of RF as an alternative classification method 

and its comparison to the conventional PLS-DA to discriminate organs based on spectral signature. 

Random forest is a classification algorithm that has found multiple applications because of its 

efficiency to handle large datasets and achieve high accuracy (Liaw & Wiener, 2002). However, 

decision tree RF modelling has been sparsely used in HS classification studies of food (Huang et al., 

2014a; Kong et al., 2013; Xu & Sun, 2017), in comparison to the commonly used PLS-DA and linear 

discriminant analysis (LDA) (Baeten et al., 2007; Dixit et al., 2017; Elmasry et al., 2012a; Huang et al., 

2014a). Positive results for RF classification were found in the present study, with accuracy compared 

to PLS-DA being very similar on the LOOCV dataset and slightly lower on the in-sample dataset. For 

COMB, RF produced greater LOOCV and in-sample accuracies than PLS-DA. Kong et al. (2013) found 

that RF modelling was superior to PLS-DA when classifying rice seed cultivars in the SWIR spectrum. 

In most previous qualitative studies with HS, PLS-DA has been used instead of RF and other 

classification methods such as PCA, LDA, support vector machines, band ratio and artificial neural 

networks (Huang et al., 2014a) because PLS-DA provides a combination of partial least squares 
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regression and LDA (Ariana & Lu, 2010). Nevertheless, LDA has shown high accuracy (>94%) in 

discriminating pork quality classes (Liu et al., 2010) and insect-damaged from normal wheat kernels 

(Singh et al., 2009) using HS imaging. One study compared PLS-DA and LDA for SWIR spectral data 

(950–1650 nm) to classify geographic origin of Chinese lamb and obtained classification accuracies of 

89% and 75%, respectively, on the validation dataset (Sun et al., 2012). These results were similar to 

those from the present study comparing PLS-DA and RF. 

 Findings from the present study indicate VIS and SWIR imaging methods, used alone and in 

combination, produced high accuracy for the spectral differentiation of individual organs. However, 

these results are to be interpreted with caution due to the small sample size. Larger trials with larger 

sample size are required to build on this pilot study for differentiation of organs within a multi-species 

abattoir or supply chain, where one or two incorrectly classified organs will not severely affect the 

model metrics. For instance, Cozzolino and Murray (2004) showed very similar results to the present 

study when differentiating meat by species, although SWIR and COMB (94–96%) showed more correct 

classification than VIS (85%). 

 The present study provided good overall accuracy (>80%) when using VIS and SWIR HS sensors 

individually and in combination to differentiate organs by type. However, one limitation was the time 

required to download, mark-up, extract and analyse the spectral data, all processes that can be 

automated based on the results of the present study. Despite a rapid scanning time (5–6 s), image 

sizes of 48 KB for VIS frames and 13 MB for SWIR frames were large, with some scans having up to 

1000 frames downloaded per scan which can be time and space consuming. This excess consumption 

may require a high-performance computer and the time required for image download processing may 

slow the uptake of these automated HS processes in commercial conditions, as any technology would 

need to be run at chain speed (Gardner et al., 2018). Similar issues with image file size were reported 

by Elmasry et al. (2012a). However, these limitations could be easily overcome and the whole process 

could be fully automated. The small sample size of the present pilot study resulted in no testing of the 

calibration model against an independent dataset, although LOOCV is an accepted and widely used 
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method for model evaluation in VIS and SWIR HS studies (Kamruzzaman et al., 2012a; Konda 

Naganathan et al., 2008; Xu & Sun, 2017). The automatic segmentation of an image into “organ” and 

“background” would allow for organ identification based on shape analysis and for discriminant 

analysis of each ROI for classification. Such programming would be needed prior to deployment in the 

industry and a larger training library is also essential in improving accuracy of the model, particularly 

regarding beef offal which was small in the present study. 

 Other characteristics that could be examined and quantified by HS imaging to assist with the 

uptake of these technologies include protein, fat, and mineral concentration of organs. Prior studies 

have investigated the prediction of these parameters with SWIR HS imaging using lamb meat 

(Kamruzzaman et al., 2012b), and near-infrared reflectance spectroscopy has also been prevalent to 

varying levels of accuracy (Lanza, 1983; Prieto et al., 2017). However, the use of ground meat as 

opposed to intact meat for the most successful of these studies has similarly slowed the progress of 

uptake in processing plants (Dixit et al., 2017). 

 The differences in reflectance and absorbance intensity between organ types arise from 

differences in the chemical composition, colour, and tissue morphology, which provide a spectral 

signature to each organ (Akbari et al., 2009; Xu & Sun, 2017). Biel et al. (2019) found that of livers, 

hearts and kidneys, livers had the most protein, P and K; hearts had the most fat; and kidneys had the 

most Ca and Na. In a study on lamb offal nutritional composition, lungs had significantly more moisture 

and Fe than the other organs, whereas heart had more fat, liver more Zn and kidney more Na (Bester 

et al., 2018). This may correspond to the findings of the present study where hearts and lungs had 

stronger reflectance than livers and kidneys. However, a study on pork found that Raman spectral 

reflectance was higher in heart, followed by kidney and lowest in liver (Hu et al., 2017) which agrees 

with the present study.  
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4.5. Conclusion 

The present pilot study showed that visible, short-wave infrared, and combined HS sensors with 

wavelengths between 400 and 1700 nm could be implemented in a multi-sensory imaging system with 

the potential for future commercial applications at chain speed. Both sensors were similarly accurate, 

and the system was very effective at differentiating livestock organs by type with good accuracy and 

sensitivity. The PLS-DA algorithms were slightly more accurate for differentiation compared to RF and 

data pre-processing methods did not provide significant advantages, except for first derivative. 

Improvements in sample size and in streamlining the analytical process to provide information in real-

time could allow such systems to be deployed into the meat processing industry as control tools for 

authentication of livestock organs by organ type. The value of the system could potentially increase 

by including other characteristics such as identification of species and disease, contamination, and 

other quality control outcomes.  
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5. A preliminary investigation into the automatic detection of 

diseased lamb organs using hyperspectral imaging 

 

Abstract. The post-mortem inspection process of livestock viscera at abattoirs is expensive and 

gruelling, but it is essential for the detection and condemnation of edible organs and carcase due to 

food safety issues. Lesions in hearts, kidneys, livers, and lungs are amongst the most common offal 

defects found in abattoirs. Visible (VIS) and short-wave infrared (SWIR) hyperspectral imaging 

implemented in a multi-sensory platform were used to differentiate between sheep parenchymatous 

organs passed as fit (Healthy, n = 42) or not fit (Diseased, n = 47) for human consumption. Partial least 

squares discriminant analysis (PLS-DA) and random forest (RF) were used to classify organs as healthy 

or diseased in heart (n = 28), kidney (n = 15), liver (n = 24), and lung (n = 22). PLS-DA produced equal 

or greater classification accuracy and sensitivity than RF for all organs except for lung when VIS sensors 

were used (means 84.4% and 78.3%, respectively). Livers and hearts (86.9%) showed higher accuracy 

than lungs and kidneys (75.9%). Limited differences occurred between VIS and SWIR sensors, although 

only one sensor tended to be more accurate compared to a combination of both. SWIR outperformed 

VIS in accuracy across all organs (84.8% vs. 76.3%), and the combination of VIS and SWIR was also 

accurate (83.0%). The use of hyperspectral imaging is an attractive proposition for the meat processing 

industry as a non-invasive imaging technology to detect defects in offal, and it can also provide 

automatic detection, saving time and labour costs.  
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5.1. Introduction 

The automation of the post-mortem meat and animal product inspection and processing in the 

abattoir has been sought for a long time. One such area of automation has been the sortation of offal 

based on fitness for human consumption via the detection of defects, contamination, or infectious 

disease (Thomas-Bachli et al., 2014; Webber et al., 2012). In the abattoir, such examinations are 

carried out by meat inspectors under the supervision of a veterinarian (Webber et al., 2012; Wilson et 

al., 2019). This inspection is of vital public health importance due to the removal of potential zoonotic 

diseases from the processing chain and thereby limiting human exposure (Butler et al., 2003). In 

addition, this inspection has economic benefits in surveillance of diseases and providing feedback to 

producers, which could be made quicker with automation (Thomas-Bachli et al., 2014). Furthermore, 

previous research in sheep found correlation between lung lesions (pleuritis, abscessation and 

pneumonia) with reduced daily gain, reduced carcase fat, and longer time to reach optimal carcase 

weight, which along with potential condemnation, affect returns to producers (Goodwin-Ray et al., 

2008; Jones et al., 1982; Lacasta et al., 2008). These findings highlight the economic benefits of 

automatic detection and rapid reporting of animal health to producers. 

  In recent decades, automation in the meat processing industry has become prevalent 

(Nade et al., 2005; Scholz et al., 2015; Toohey et al., 2018). Similarly, veterinary medicine studies have 

used CT to detect abnormalities in anaesthetised cattle prior to euthanasia and organ removal (Lee et 

al., 2009; Lee et al., 2011). The use of modern non-contact sensor technology to automate the process 

of meat and offal inspection to detect health and safety hazards has been suggested, with 

expectations to provide a more rapid, accurate, and sensitive measurement, with greater 

maintenance of food safety (Neethirajan et al., 2017; Uzal et al., 2002; Webber et al., 2012). Sensors 

also provide automatic decision making and sorting tools for characterisation and deviation detection 

in processing plants (Neethirajan et al., 2017). Non-invasive inspection can also prevent potential 

spread of zoonotic diseases or cross-contamination of infectious diseases between carcases or organs 

(Samuel et al., 1980; Uzal et al., 2002). Despite this, the post-mortem scanning of internal organs has 



138 
 

been scarce, with high costs and practicality affected by the physical size of imaging systems 

presenting constraints to their commercial uptake (Neethirajan et al., 2017; Scholz et al., 2015; 

Webber et al., 2012). Similarly, image size and the slow speed of computers present a constraint when 

a large number of organs need to be scanned on a commercial production line (Chapter 4; Elmasry et 

al., 2012a). 

 The use of hyperspectral (HS) imaging, which can be split into visible (VIS: 400–900 nm) and 

short-wave infrared (SWIR: 900–1700 nm), has been successfully trialled previously to detect 

microbial spoilage in fish (Cheng and Sun, 2015), skin tumours in poultry (Nakariyakul and Casasent, 

2009), and offal contamination in meat mixtures (Kamruzzaman et al., 2014). The latter studies all 

showed precision and accuracy greater than 90%. The suitability of HS imaging for the meat and food 

industries has been the subject of several reviews (Baeten et al., 2007; Elmasry et al., 2012a; Huang 

et al., 2014a; Xu and Sun, 2017). Prediction algorithms can be developed to differentiate animal tissues 

and abnormalities from measurements of size, texture, colour, shape, and spectral signatures of 

regions of interest (ROI) (Elmasry et al., 2012a; Xu and Sun, 2017). However, none of these reviews 

examined HS sensor technology as a tool to detect diseases in sheep organs. 

 Diseases commonly encountered post-mortem in parenchymatous organs in include liver 

fluke (Fasciola hepatica) and cysticercosis (Cysticercosis tenuicollis) in the liver, caseous lymphadenitis 

(CLA; Corynebacterium pseudotuberculosis) and pneumonia (Pasteurella spp. and Mycoplasma spp.) 

in lungs, cysticercosis (Cysticercus ovis) in the heart, and interstitial nephritis in the kidney (AHDB, 

2017). In addition, hydatid cysts (Echniococcus granulosis), abscesses, and haemorrhage can occur in 

several organs. These animal health issues lead to condemnation of the organ for human consumption 

and may even result in condemnation of the entire carcase. For instance, the carcase is usually 

condemned if C. ovis cysts are found in three or more locations, or if emaciation occurs concurrently 

with liver cysts or CLA, or secondary infections such as septicaemia occur from pneumonia (AHDB, 
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2017). Poor body scores and excessive abscessation can also lead to entire carcase condemnation, 

which result in significant economic losses (Arsenault et al., 2003; Uzal et al., 2002). 

 The present study selected parenchymatous organs (hearts, kidneys, livers, and lungs) from 

sheep that were and were not deemed fit for human consumption by the inspectors at a commercial 

abattoir. Organs were scanned using a multi-sensory platform encompassing VIS and SWIR sensors, 

and then examined grossly by veterinary pathologists to confirm abnormalities. These spectral data 

were then analysed using both partial least squares discriminant analysis (PLS-DA) and random forest 

(RF) as per Chapter 4 to classify each organ as healthy or diseased. It was hypothesised that both PLS-

DA and RF would have good and comparable accuracy in classifying the organs as healthy or diseased.  
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5.2. Materials and Methods 

All offal used in the present study were sourced from a collaborating abattoir and animal ethics 

approval was not necessary. 

 

5.2.1. Sample collection and storage 

A total of 89 sheep parenchymatous organs were collected from a collaborating abattoir in New South 

Wales, Australia, following commercial slaughter. Organs were processed as per Australian guidelines 

including palpation and incisions if needed (Wilson et al., 2019) and were stored chilled (1–4 °C) when 

not examined or scanned. Organs were described as hearts, kidneys, livers, or lungs, and either healthy 

or diseased, with those diseased considered as not fit for human consumption (Table 19). All organs 

were transported from the abattoir to the laboratory, scanned entire with the multi-sensory platform, 

and then examined for abnormalities by experienced veterinary pathologists. 

 

5.2.2. Scanning procedure 

All organs were scanned using a non-contact multi-sensory imaging platform encompassing HS 

technology and multi-energy X-ray attenuation (Rapiscan Inspection System AK198, Rapiscan Systems 

Pte Ltd, Singapore) as previously described (see section 4.2.1 and Fig. 8). The multi-sensory system 

included a conveyor belt (6.64 s, 1260 mm, 0.19 m/s) and it was run by an Ubuntu (Linux) Cube 

computer program, which controlled exposure time, image size, and acquisition rate. Two HS sensors 

covered the spectral range from 400–900 nm (VIS) and 900–1700 nm (SWIR). The VIS (Basler Ace GigE, 

Photonic Science, East Sussex, UK) and SWIR (Snake A/C GigE v3 AK081, Photonic Science, East Sussex, 

UK) sensors were powered by 12 V power supply units and fitted with Specim spectrographs 

(VNIRV10E and NIR V17E, respectively) and a Grade 1 InGaAs detector with air cooled housing. 

Spectral resolutions were 3 and 5 nm for VIS and SWIR, respectively, with both sensors capturing 200 
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spectral slices per second. Spectral increment (1.5 nm, VIS 300 bands, and SWIR 512 bands), sensor 

resolutions (VIS 1920 x 1200 px; SWIR 640 x 512 px), frame rate (150 fps), refresh rate (150 Hz, 6.66 

ms) and exposure times (VIS 6.4 ms; SWIR 4.0 ms) were used as per Chapter 4 (see section 4.2.1). 

 

5.2.3. Organs’ gross examination 

All organs were systematically examined by veterinary pathologists for gross lesions. Should a lesion 

be present the following data were recorded: location, distribution, demarcation, colour, shape, 

appearance of the cut surface, and consistency. The most likely cause of the lesion was also recorded 

to the organ in question. Organs were also examined for off-colours and inconsistency in texture by 

palpation, with sectioning and sampling for histopathology in some instances, to confirm the identity 

of the lesions. 

 

5.2.4. Image analysis and extraction of spectral data 

As per Chapter 4 (see section 4.2.2), HS images (both VIS and SWIR) were downloaded as 200–300 

slices in PNG format, with trimming done to remove slices beyond 10 frames either side of the tray 

the samples were scanned in. MATLAB programming language (MATLAB R2021a, Mathworks Inc., 

USA) was used to construct complete organ images from individual frames, with these images viewed 

using Gnu Image Manipulation Program (GIMP) software (version 2.10.18; GIMP Development Team, 

2020) and marked-up using ImageJ (version 1.53a; National Institutes of Health, Bethesda, MD). Three 

to eight evenly spaced ROI (7 x 7 px, 10.2 mm width x 9.0 mm length) were marked-up for each organ 

depending on the size of the organ. Pixel dimensions of the ROI were written into the MATLAB 

algorithm referenced in Chapter 4 (section 4.2.2) to extract spectral data. All HS data (both VIS and 

SWIR) were averaged for each organ, with organs classified by their organ type (heart, kidney, liver, 

or lung) and their status (Diseased or Healthy, based on the classification at the abattoir and 

corroborated by the pathologists). 
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5.2.5. Outlier removal and spectral trimming 

Subsequently, mean reflectance spectral data from VIS, SWIR, and combination of both sensors 

(COMB) were imported into R (version 4.0.2; R Core Team, 2020). A principal components analysis 

(PCA) model using the mdatools package (Kucheryavskiy, 2020) was used to visualise each dataset and 

identify outliers with orthogonal and score distances > 20 on the Q residual plot (Kucheryavskiy, 2021). 

Two organs (one diseased heart and one diseased lung) were removed from the VIS and COMB 

datasets because these were detected as outliers. As per the data pre-processing methods of Chapter 

4 (see section 4.2.3), the spectra between 470.5–800.5 nm (VIS), and 1000.5–1600.5 nm (SWIR) were 

retained with those outside these ranges presenting as flat endpoints. 

  In the present study comparisons were made between the disease statuses of different 

organs, therefore all datasets (VIS, SWIR, and COMB) were analysed separately according to their 

organ type (heart, kidney, liver, and lung). As per the results obtained by Chapter 4 (see section 4.2.3), 

all reflectance spectra were smoothed using the trimmed centred moving average method with a 

sliding window (length = 11) and then transformed to obtain the first derivative of absorbance where 

absorbance = log(1/reflectance). All data processing was done in R (R Core Team, 2020) with the 

assistance of the suite of tidyverse packages (Wickham et al., 2019). 

 

5.2.6. Classification model development 

Classification models were developed using two machine learning methods within the Caret package 

(Kuhn, 2020) i.e., partial least squares discriminant analysis (PLS-DA) and random forest (RF). 

Resampling for model tuning and evaluation of all datasets was done using the LOOCV method and all 

datasets were centred and scaled. The number of components (ncomp) for PLS-DA models of each 

organ type were selected according to the highest accuracy. The number of variables available for 
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splitting at each tree node (mtry) used for the RF models was selected using the lowest log loss (Kuhn, 

2008; Liaw and Weiner, 2002). 

 Model evaluation for diseased or healthy status was done by fitting tuned models using the 

LOOCV of each of the four organ types, three spectral ranges, and both classification methods. For the 

estimated models, goodness-of-fit model metrics including sensitivity, specificity, precision, accuracy, 

and coefficient of agreement (Kappa) were generated with Diseased being the positive class.  
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5.3. Results 

5.3.1. Abattoir sortation and post-mortem 

All organs labelled by the abattoir as healthy or fit for human consumption (n = 42), were similarly 

labelled by the veterinary pathologists with no detectable lesions. However, 16 of the 47 organs 

labelled as diseased at the abattoir presented no detectable gross lesions other than discolouration 

and were therefore rejected for human consumption (Table 19). Discolouration was the most common 

and predominant reason for rejection of hearts and kidneys (73.7%), whereas mineralisation in the 

liver (36.4%), CLA (35.3%) and pneumonia (29.4%) in lungs were also significant in the present study 

(Table 19). 

 

 Table 19. Gross interpretation of lesions found in sheep organs after slaughter. 

 

 

 

 

 

 

 

 

 

 

 

* Found in the hepatic lymph node. 

** Found in the mediastinal lymph node. 

*** NDL – no detectable lesions. Some lungs showed more than one lesion. 
 

Lesion Heart Kidney Liver Lung Total 

Haemorrhage 1 1 1 1 4 

Mineralisation 0 0 4 0 4 

Pneumonia n/a n/a n/a 8 8 

Caseous lymphadenitis 0 0 1* 6** 7 

Pyelonephritis 0 1 0 0 1 

Atelectasis 0 0 0 2 2 

Myocarditis 1 0 0 0 1 

Hepatitis 0 0 3 0 3 

Abscessation 0 0 0 2 2 

Myocarditis 1 0 0 0 1 

Bronchiectasis 0 0 0 1 1 

Discolouration but NDL*** 10 4 2 0 16 

Total Diseased 13 6 11 17 47 

Total Healthy 15 9 13 5 42 

Total 28 15 24 22 89 
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5.3.2. Spectral data and model tuning 

Figs. 1 and 2 show the transformed VIS and SWIR absorbance spectra, respectively, split by organ type. 

The VIS spectra showed no complete separation of diseased organs from healthy organs (Fig. 13). 

However, the region between 600 and 660 nm showed the greatest separation between healthy and 

diseased status, particularly for hearts and livers, with diseased organs showing greater absorbance 

than healthy organs at 600 to 620 nm, and the reverse occurring from 620 to 660 nm. The SWIR 

spectrum of organs showed a more evident and longer region of healthy and diseased organ 

differentiation than VIS (1020–1320 nm), regardless of organ type (Fig. 14). Across this range, the 

clearest differentiation between healthy and diseased organs occurred in kidneys, where absorbance 

was greater for healthy than diseased kidneys. 

 

 

Fig. 13. Transformed (first derivative) and smoothed (centred moving average) visible absorbance 

hyperspectral data of healthy and diseased sheep organs. 
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Fig. 14. Transformed (first derivative) and smoothed (centred moving average) short-wave infrared 

absorbance hyperspectral data of healthy and diseased sheep organs. 

 

 Due to the small sample size, ncomp of the PLS-DA models tended to be small, particularly for 

liver and lung, with lung being the most unbalanced organ dataset in terms of numbers of healthy and 

diseased (Table 20). Conversely, heart was the most abundant organ, and all PLS-DA models used 

ncomp of 5 or more (Table 20). It is worth noting that ncomp of 10 was originally selected for COMB 

differentiation of liver, although this model overfit with 100% for all goodness-of-fit metrics on the 

training dataset but much lower on the validation dataset (data not shown). The smallest organ in 

total number (kidney) had the lowest mtry values for SWIR, though the highest for VIS and COMB. 

Meanwhile, the most abundant (heart) had the greatest mtry values for SWIR, and the lowest for 

COMB (Table 20). 

 

5.3.3. Classification of organs as healthy or diseased 

Table 20 shows the results for differentiating sheep organs based on healthy or diseased status using 

three different spectra (VIS, SWIR, and COMB) and two different classification methods (PLS-DA and 
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RF). Hearts and livers were correctly classified as diseased or healthy using PLS-DA above 85% 

regardless of the sensor used. All diseased lungs were correctly identified as diseased using SWIR and 

PLS-DA, whereas all healthy kidneys were correctly identified as healthy using the same methods. The 

combination of the two sensors predicted disease status better than both individual sensors with PLS-

DA modelling for livers, and with RF modelling for hearts. However, COMB did not outperform both 

individual sensors for any other organ or classification method. 

 Classification and detection of diseased kidneys tended to be the weakest among the organs 

used in the present study, showing sensitivities below 67% and accuracies below 87%. In contrast, 

lungs showed the lowest specificity across sensors and models with RF modelling below 20% and 

Kappa below 18%. 

 Regarding machine learning methods, PLS-DA outperformed RF in classification accuracy 

except for differentiating healthy and diseased lungs using the VIS sensor (Table 20). However, the 

majority of these differences were small, or RF was equal in accuracy to PLS-DA, which occurred for 

differentiating healthy from diseased hearts using COMB and livers using SWIR. 
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Table 20. Goodness-of-fit statistics from hyperspectral (HS) data used to differentiate between 

diseased or healthy organs of sheep from commercial slaughter. 

VIS visible; SWIR – short-wave infrared; COMB – combination VIS and SWIR; PLS-DA – partial least 
squares discriminant analysis; RF – random forest; Tuning – number of components (ncomp) for PLS-
DA and number of nodes available for each tree splitting (mtry) for RF.  

Spectral range Method 
Statistic 

Tuning Accuracy Kappa Sensitivity Specificity Precision 

 Heart 

VIS 
PLS-DA 5 0.85 0.70 0.75 0.93 0.90 

RF 430 0.78 0.54 0.67 0.87 0.80 

SWIR 
PLS-DA 7 0.89 0.79 0.92 0.87 0.86 

RF 480 0.82 0.64 0.77 0.87 0.83 

COMB 
PLS-DA 5 0.85 0.70 0.83 0.87 0.83 

RF 300 0.85 0.70 0.83 0.87 0.83 

 Kidney 

VIS 
PLS-DA 7 0.73 0.44 0.67 0.78 0.67 

RF 470 0.60 0.17 0.50 0.67 0.50 

SWIR 
PLS-DA 6 0.87 0.71 0.67 1.00 1.00 

RF 320 0.73 0.41 0.50 0.89 0.75 

COMB 
PLS-DA 1 0.80 0.57 0.67 0.89 0.80 

RF 470 0.73 0.41 0.50 0.89 0.75 

 Liver 

VIS 
PLS-DA 4 0.88 0.75 0.82 0.92 0.90 

RF 450 0.83 0.66 0.73 0.92 0.89 

SWIR 
PLS-DA 2 0.92 0.83 0.91 0.92 0.91 

RF 410 0.92 0.83 0.91 0.92 0.91 

COMB 
PLS-DA  4 0.96 0.92 0.91 1.00 1.00 

RF 390 0.88 0.75 0.82 0.92 0.90 

 Lung 

VIS 
PLS-DA 1 0.67 -0.16 0.88 0.00 0.74 

RF 330 0.76 0.17 0.93 0.20 0.79 

SWIR 
PLS-DA 6 0.91 0.70 1.00 0.60 0.90 

RF 430 0.73 -0.08 0.94 0.00 0.76 

COMB 
PLS-DA 2 0.81 0.39 0.94 0.40 0.83 

RF 380 0.76 0.17 0.94 0.20 0.79 
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5.4. Discussion 

In examination of the organs, it was determined that CLA was the most common disease of sheep 

resulting in offal rejection for human consumption in the present study (35.3%), which was consistent 

with Australian sheep findings reported by Webber et al. (2012). Pneumonia and CLA made up the 

majority of rejected lungs (64.7%), whereas the most common disease for rejected livers was focal 

parenchymal mineralisation (36.4%). On the other hand, most of the condemned hearts and kidneys 

in the present study were rejected due to discolouration. From a food safety perspective, CLA 

dominance provides limited risk to the entire carcase (Murray, 1986) or human health if there are no 

open wounds (Arsenault et al., 2003). However, labour associated with slicing to detect CLA lesions 

and abscesses, carcase trimming, and disinfection, has been mentioned as associated losses for 

processors, along with reduced performance and animal deaths for producers (Arsenault et al., 2003). 

For this reason, the automatic detection and subsequent excision of CLA lesions could enhance the 

post-mortem process. 

 The measurement of instrumental colour (CIE L*, a*, b*) and detection of its changes have 

been previously explored using HS imaging and computer vision (Chen and Kim, 2004; Elmasry et al., 

2012b; Xu and Sun, 2017). For instance, SWIR HS (964–1631 nm) was used successfully with 

instrumental colorimetry to measure colour changes in salmon fillets (Wu et al., 2012). Such 

technologies could be similarly applied using different organs, although the colorimeter would provide 

contact with the organs. Hyperspectral analysis can detect different surface textures within the same 

organ (Xu and Sun, 2017), which could assist with identifying specific regions of disease such as CLA 

within an organ, and also detect specific diseases that may be present. However, more samples would 

be required to develop a reliable training model that can be evaluated with an independent dataset 

rather than using resampling as used in the present study. In addition, more samples possessing one 

particular pathology or lesion type, such as CLA in the mediastinal lymph nodes of the lung (Arsenault 

et al., 2003; Webber et al., 2012), could also improve the prediction models for identification of 

specific diseases and locations within organs. 
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 The collection of several condemned organs with similar pathologies may also improve HS 

prediction models and allow them to detect additional lesions and identify specific diseases and their 

locations within organs. For instance, CLA in the mediastinal lymph nodes of the lung could be used 

for this based on the results of the present study and others (Arsenault et al., 2003; Webber et al., 

2012). In turn, this could reduce the costs of veterinary inspection in the abattoir, particularly given 

the lack of zoonotic diseases (e.g., liver fluke) encountered in the present study. 

 Hyperspectral prediction models were better at detecting diseased than healthy lungs as 

reflected by the high sensitivity and low specificity. However, this would likely mean healthy lungs 

would be marked as diseased by the model. The other organs tended to have higher specificity than 

sensitivity, although the values were much closer than in lungs. These sensitivities showed that, while 

promising, this system requires substantial improvements (Xu and Sun, 2017). The combination of the 

two HS sensors spanning VIS and SWIR ranges (400–1700 nm) did not necessarily provide greater 

accuracy than either of the two sensors separately, which was a finding similar to Chapter 4 of the 

present thesis where the same sensors were used to differentiate organs by type. Despite the small 

sample size, the positive goodness-of-fit statistics sorting hearts and livers as diseased or healthy 

encountered in the present study constitutes a good feasibility study rather than for industry purposes 

(Williams et al., 2017). However, the use of samples with more gross lesions present may provide 

greater accuracy and sensitivity, which was true in the present study for livers and lungs, respectively. 

Larger datasets and more gross lesions could allow for combination with the study presented in 

Chapter 4 of the present thesis to also discriminate between different organ types as well as between 

healthy and diseased organs, which would be ideal prior to trialling such technologies in abattoirs. 

 The use of non-invasive imaging devices could assist the biosecurity procedures in preventing 

diseases bypassing into markets as a result of human error. In this context, studies on breast cancer 

screening in humans have reported artificial intelligence models as being more accurate in 

mammogram performance than human screeners (McKinney et al., 2020). However, similar studies 
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using artificial intelligence in animal health surveillance are still in their infancy, though improved 

accuracy and decision making have been noted (Ezanno et al., 2021). The present study did not attain 

high accuracy for all organs but provides a solid pilot study encouraging a large-scale study to be 

conducted. Few studies have taken to imaging animal organs, with most that employed non-invasive 

imaging devices providing information on whole carcase, meat, or skin composition and health 

(Elmasry et al., 2012a; 2012b; Nade et al., 2005; Scholz et al., 2015). However, some veterinary 

medicine studies scanned entire live sedated animals scanned with CT for detection of lesions such as 

abscesses in cattle (Lee et al., 2009; Lee et al., 2011) and screening for cystic echinococcosis in sheep 

(Mao et al., 2017). Subsequently, animals were euthanised and lesions were examined using 

histopathology (Lee et al., 2009; Lee et al., 2011; Mao et al., 2017). However, these studies tended to 

be exploratory in nature with a small number of samples and use of simple regression and Pearson 

correlation analyses, rather than focusing on surveillance of large numbers of animals entering 

processing plants with more advanced machine learning modelling. 

 Regarding machine learning classification methods, PLS-DA tended to be more accurate than 

RF in the majority of the models, which was also seen in the prior study differentiating beef and sheep 

organs by type (Chapter 4, see section 4.3). However, the accuracy of RF was not overly lower than 

PLS-DA and was equal in several models. Random forest modelling is a more modern and alternative 

classification method to the conventionally used PLS-DA (Huang et al., 2014a; Liaw and Wiener, 2002). 

Previous findings using RF for classification of rice cultivars (Kong et al., 2013) and in plant ecological 

studies (Cutler et al., 2007; Lawrence et al., 2006) were positive. However, few studies have employed 

RF in studies with HS data classifying animal products. In the present study only discrimination of 

diseased and healthy lungs using VIS showed improved accuracy, sensitivity and precision for RF 

compared to PLS-DA, with lower specificity and Kappa. Similarly, only kidneys using VIS data showed 

improved specificity and Kappa for RF compared to PLS-DA, with equal precision and accuracy. Overall, 

it can be concluded that RF showed promise but was generally lower in accuracy as a machine learning 

method compared to PLS-DA. 
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 It was an interesting finding that hearts were one of the most accurately classified organs for 

diseased or healthy status given that only 10 of the 13 hearts condemned by the abattoir had evidence 

of pathological processes at gross examination as opposed to appearance defects. On the other hand, 

all condemned lungs and the majority of livers had evidence of clinical diseases associated with them. 

This finding of more gross lesions present in the liver and lungs, resulting in production losses, was 

demonstrated by previous studies (Arsenault et al., 2003; Mao et al., 2017). Furthermore, Mao et al. 

(2017) found that the presence of cysts in both livers and lungs of sheep was highly correlated, and 

that the use of CT on live sheep successfully identified 86% of the total number of cysts found during 

a necropsy. The CT showed better results for determining the diameter, location, and type of cyst. 

Similar results were found in the present study for sheep livers and lungs using SWIR HS and PLS-DA 

as a classification method (91–92% accuracy). However, the present study did not identify the size, 

type, or location within the organ of the lesions, which could assist in the extraction of spectral data 

from the lesions themselves. Therefore, future studies should include an accurate demarcation of the 

lesion and differentiation by type with larger sample size, which could be further improved with 

combination of X-ray and HS imaging. In doing so, rapid and objective post-mortem health feedback 

from processors to producers could be made (Lee et al., 2011; Webber et al., 2012). Hyperspectral 

imaging could also assist with animal and herd health management post-mortem at a veterinary 

medicine level (Neethirajan et al., 2017), providing diagnoses and identifying potential disease 

outbreaks as has been done previously in exploratory studies using CT (Lee et al., 2009; Mao et al., 

2017).  
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5.5. Conclusion 

Visible and short-wave infrared HS imaging can be used to determine the disease status of sheep 

organs, with this pilot study proving that classification accuracy was adequate overall and was 

particularly successful for livers and hearts. However, it is worth noting that the diseases were often 

identified with the naked eye, palpation, or were presented as discoloured to abattoir inspectors. 

Future studies could use HS imaging, alone or in combination with other technologies such as multi-

energy X-ray or CT, to identify specific pathologies within individual organs and their locations. 

However, they would need to use more samples, particularly those presenting similar lesions. This 

could be very beneficial for the meat processing and veterinary medicine industries. Hyperspectral 

imaging technologies are non-invasive and non-contact, with the potential to enable automatic sorting 

of livestock organs and disease detection in the abattoir, allowing animal health reports to be provided 

for producers.  
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6. General Discussion and Conclusions 

The global meat and livestock industry needs objectivity and automation to measure product quality 

and detect products that are unsuitable for the intended market (Dixit et al., 2017). The present thesis 

provided pilot investigations into four key areas, 1) meat quality and chemical composition, 2) 

authentication of meat by feeding regime, 3) classification of organs by type, and detection of defects, 

and 4) diseases in organs. Beef and sheep were used in the present thesis due to their high importance 

in the Australian agricultural industries, consumption, and exports (MLA, 2017a; MLA, 2017b). 

Retailers and consumers are becoming more aware of food health and safety and demand more 

information and certainty about them (Pethick et al., 2018; Toohey et al., 2018; Van Elswyk & Mcneill, 

2014). The first two experimental chapters of the present thesis evaluated low-cost, handheld devices 

to objectively measure the chemical composition and feeding regime of meat which could also see 

applications for retailers and consumers (Chapter 2; Chapter 3). Chapters 4 and 5 explored the use of 

hyperspectral sensors to automatically identify organs by type and effects for applications in the 

automation of processes. The sample sizes were small as the pilot investigations were conducted to 

explore the potential of the technologies and determine if further investment from the meat 

industries was encouraged. 

 The general hypothesis and objective of the present thesis was that spectroscopic sensors 

(NIRS, Raman spectroscopy, HS imaging) could provide objective measures of chemical composition, 

feeding regime, organ type, and presence of defects or diseases in organs. Except for Chapter 3, which 

employed a large dataset with equal numbers of grass-fed and grain-fed beef, these hypotheses were 

proven on small datasets, with accuracy exceeding 80% in most cases. Chapter 5 showed that 

detection of organs by defect or disease was strongly dependent on organ type, with hearts and livers 

showing greater accuracy than kidneys and lungs. 
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6.1. Applications and value of novel spectroscopic sensors 

The lack of objective measurements for meat grading has led to several nations developing their own 

independent grading systems, although the results of some papers have concluded that numerous 

similarities between these exist (Bonny et al., 2018; Pethick et al., 2018; Polkinghorne & Thompson, 

2010; Strong, 2004). The most important objective measure of eating quality found in the review of 

several studies (Chapter 1, section 1.3.1) was the quantification of intramuscular fat (IMF) due to its 

effect on tenderness, juiciness, flavour, and overall liking (Frank et al., 2016). The IMF is correlated to 

subjective marbling scores as demonstrated by Savell et al. (1986), although subsequent studies have 

been sparse (Bindon, 2004; Cameron et al., 1994; Dow et al., 2011; Kruk et al., 2002; Ueda et al., 2007). 

The present thesis showed moderate to good precision (r2
val = 0.53–0.81) between chemical and 

objective measures of IMF using on-line handheld NIR spectroscopy (Chapter 2, section 2.3.3). 

However, the precision was much stronger on FD and ground meat than FI meat which suggests that 

sample homogenisation and drying is required for more accurate predictions, as was demonstrated in 

soil samples (Wadoux et al., 2021). Previous studies measured objective marbling content as a 

percentage via charge coupled or mirror-type cameras in Wagyu rib eyes (Connolly et al., 2020; 

Kuchida et al., 2000; Nakahashi et al., 2008). Similarly, red-green-blue camera technology connected 

to smartphones via Bluetooth have been used commercially to measure marbling scores (MB, MSA 

and AUS-MEAT) and IMF content in Wagyu rib eyes (Condon, 2020). Meat eating quality probes based 

on laser reflectance have also been used commercially to measure IMF content (Sim, 2021a). The fact 

that these devices are non-contact and can provide the information instantly can allow a more 

streamlined approach into industry uptake. Smartphone NIRS sensors, as used in Chapters 2 and 3 of 

the present thesis, instead present a valuable screening tool for consumers. However, the precision 

and accuracy of NIRS to predict IMF, crude protein, moisture content, and pH of commercial FI beef 

and lamb cuts were low as demonstrated in Chapter 2. 

 One study alternative that could improve the accuracy of IMF prediction by NIRS sensors is 

the use of discrimination methods to sort cuts into groups of high, moderate, and low marbling (as 
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well as CP, moisture, and pH), similar to the statistical analyses performed in Chapters 3–5 (PLS-DA, 

LDA, RF). Prior on-line NIRS studies have found 78% accuracy for tenderness (shear force) above 

median (Shackelford et al., 2005) and 90% accuracy for dark cutting (Prieto et al., 2014b) using official 

methods from the USA and Canada, respectively. Based on these findings and the discriminant 

analyses in Chapter 3, it is possible to create a reliable non-destructive prediction model for meat 

quality classes differentiated by IMF concentration and other measurements of chemical composition. 

However, this approach may need a larger number of samples to allow sortation into classes (i.e., 0–

1%, 1–3%, 3–5%, 5–10%, 10–15%, 15+% IMF, or high-medium-low CP) because the results of the 

present thesis and other studies have shown inconsistent results and low accuracy of NIRS when 

predicting chemical composition in intact meat treated as linear variables. 

 Alternatively, hyperspectral (HS) imaging could present a non-contact and accurate 

alternative to measure eating quality, although the cost and sheer size of installation of such systems 

in abattoirs is high. However, the advantage of these systems is that they can run automatically and 

uninterrupted at chain speed constantly measuring quality attributes on a conveyor belt (Hitchman et 

al., 2021). Therefore, the cost savings in labour and speed to obtain objective measures ‘on the fly’ 

and to use these data for automation processes such as sorting of products can offset the installation 

cost. Chapters 4 and 5 both encountered large image sizes and long processing times, which were 

mentioned in the review by Elmasry et al. (2012) as barriers to industry adoption. Nevertheless, this 

is unlikely to be a limitation with recent and constant advances in computing and information 

technologies. Recent studies have shown that using a multi-sensory system containing both HS and 

NIRS sensors can predict IMF concentration and pH of intact beef reliably and with high precision and 

accuracy (r2
val > 0.90; RPD > 3; Dixit et al., 2021), scores consistent with industry determination 

(Williams, 2001). Similarly, the HS imaging system used in the present thesis has demonstrated at 

chain speed the successful discrimination of grass-fed and grain-fed frozen beef without contact 

(Coombs et al., 2021c; Table 21). 
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Table 21. Preliminary results to classify frozen steaks as grass-fed or grain-fed using two 

hyperspectral (HS) sensors in a multi-sensory platform using three different machine learning 

methods. 

 Visible HS sensor 

Method Sensitivity Specificity Precision Accuracy Kappa 

PLS-DA 0.929 0.929 0.929 0.929 0.857 
LDA 1.000 0.929 0.933 0.964 0.929 
RF 0.857 0.857 0.857 0.857 0.714 

Short-wave infrared HS sensor 

PLS-DA 0.786 0.929 0.917 0.857 0.714 
LDA 0.786 0.929 0.917 0.857 0.714 
RF 0.786 0.857 0.846 0.821 0.643 

Adapted from Coombs et al. (2021c). PLS-DA: partial least squares discriminant analysis; LDA: linear 
discriminant analysis; RF: random forest. 

 

 In addition, the accuracy and applications of multi-sensory platforms could be augmented 

with extra sensors such as X-ray as in the platform used in the present thesis. Unfortunately, time and 

length of the thesis did not allow for inclusion of X-ray data, but research is ongoing to determine the 

potential of additional information from X-ray data to measure product quality and safety. 

Furthermore, robust HS models for lamb IMF prediction incorporating flock and year of slaughter data 

are in progress (Hitchman et al., 2021). It is worth noting that Meat Standards Australia (MSA) does 

not provide marbling grading for sheepmeat (Fowler et al., 2020; MLA, 2012; Toohey et al., 2018) 

despite its importance to eating quality (Allen, 2021). However, objective automatic marbling score is 

a trait being investigated for its inclusion in official sheepmeat grading (Allen, 2021; Jacob & Calnan, 

2018; Pannier et al., 2018; Sim, 2021a) and a price grid has been launched for additional payments for 

high IMF (>5%) lamb carcases to producers (Sim, 2021b). 

 The discrimination of beef cuts into grass- and grain- feeding regime was successful using both 

NIRS and Raman spectroscopy, with NIRS outperforming Raman on lean surfaces and Raman 

outperforming NIRS on fat surfaces (Chapter 3). The handheld, smartphone connectable NIRS sensor 
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was used because its small size, low cost, speed of analysis and lack of outliers would increase its 

practicality to the meat industry as an authentication tool (Chapter 3). In contrast, the Raman sensor 

used in Chapter 3 did not pose these advantages to the same extent as the NIRS sensor. Conducting 

larger studies with more samples would provide greater information on the accuracy and robustness 

of prediction models which could enhance processor uptake of these technologies. Using the same 

cut type for comparison of MSA marbling and DOF data may improve upon the very low accuracy of 

NIRS and Raman in Chapter 3 and can determine if a larger trial is warranted. 

 Chapters 4 and 5 explored a multi-sensory platform that is designed to mimic airport baggage 

scanners (Paulus et al., 2017) with the trials explored to determine the efficacy of installation within 

commercial abattoirs which has been done in pilot plants using dual-energy X-ray attenuation 

(Gardner et al., 2010; Gardner et al., 2018) and HS imaging (Dixit et al., 2021). These systems primarily 

focused on carcase composition and meat quality, respectively. In contrast, the present thesis trialled 

HS imaging to automatically detect and identify organs by type and defects (Chapters 4–5). Whereas 

Chapter 4 mixed beef and sheep organs to classify by type only, Chapter 5 used only one species and 

focused on sheep organs. The collaborating abattoir marked several hearts and some kidneys and 

livers as defective, although a subsequent examination by veterinary pathologists found no detectable 

lesions and only discolouration. This is a reason to support a naming convention of ‘organs with 

defects’ instead of ‘diseased organs’ or ‘condemned organs’, which were used in Chapter 5. In 

contrast, most livers and all lungs were found to possess diseases, though none seemed to be 

zoonotic. It can be concluded that the potential of HS upon the smaller sample size used in Chapter 5 

means that a larger study with equal numbers of diseased and healthy organs is warranted prior to 

development of methods for use in processing plants. 

 AgResearch (2018) and Cook and Anderson (2017) conducted similar pilot studies to the 

results presented in Chapter 5 focused on animal health using X-ray and computed tomography, 

respectively, although these were not published in peer-reviewed journals nor were they scientifically 
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analysed. The differentiation of organs by type in the present thesis was successful, although the 

mixing of beef and sheep organs was unconventional and may have confounded the results. However, 

the reasons to do this analysis was the small sample size to evaluate the classification models properly 

and the similarity of the spectral data for organs of both species as shown in Fig. 15 below. It was 

noted in Chapter 4 that smaller abattoirs in Australia often process multiple species while larger ones 

tend to focus on one species only (Toohey et al., 2018). For these reasons, the results from an analysis 

with the same data as Chapter 3 but classifying organs by species and type is presented in the following 

section. 

 

6.2. Reflectance spectroscopy to identify organs by species and type 

The multi-sensory platform used in the present thesis could be used in organ processing scenarios 

under commercial conditions such as abattoirs or processing plants. One example is where organs 

are mixed and need to be identified by both species and type. The spectra of each organ and results 

of classification algorithms to differentiate organs by species and type are presented in this section. 

Visible (VIS) and short-wave infrared (SWIR) reflectance spectra for each of the four organs and each 

species are shown in Fig. 15, with hearts and lungs showing higher intensity compared to livers and 

kidneys in both VIS and SWIR regions. For VIS spectra the difference in intensity was shown to occur 

between 500 and 850 nm (Fig. 15A and B). Hearts and lungs had similar spectral signatures 

throughout the VIS spectrum except between 500 and 600 nm where hearts had greater intensity. 

Similarly, kidneys showed slightly greater intensity than livers between 500 and 600 nm. Much 

stronger differentiation occurred in the SWIR region, particularly between 1050 to 1350 nm where 

lung was greatest in intensity, followed by heart, then liver, and then kidney with the lowest 

intensity (Figs. 1C and 1D). Differences between species were negligible for both spectra (Fig. 15). 
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Fig. 15. Mean visible (panel A and B) and short-wave infrared (panel C and D) reflectance spectra for 

each of the organs from sheep (panel A and C) and beef (panel B and D). 

 

 The datasets were pooled across species to develop algorithms for organ and species 

differentiation as if a mix of organs from both species were scanned through the platform. These 

algorithms were developed and validated using 5-fold cross-validation. When using both species, the 

three different spectral regions used in the present study (VIS, SWIR, and combination VIS and SWIR 

– COMB) each performed best using a different discriminant analysis model for predictions. 

Predictions from VIS spectral data were most accurate with linear discriminant analysis (LDA) 

modelling (Fig. 16). In contrast, predictions from SWIR data were most accurate using random forest 

C) 

B) A) 

D) 
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(RF) modelling (Fig. 17), and COMB predictions with partial least squares discriminant analysis (PLS-

DA) modelling (Fig. 18). However, the three classification methods evaluated with either VIS or SWIR 

yielded similar accuracies to each other, but COMB was much more accurate with PLS-DA compared 

to RF and LDA. The PLS-DA model for COMB also had the highest sensitivity, specificity, area under 

the curve, and Kappa coefficient of agreement (Fig. 18). Using COMB yielded the highest overall 

accuracy (71–92%) and Kappa (63–89%) compared to the use of each sensor separately, regardless 

of the discriminant analysis method used. Therefore, these results show that HS imaging is accurate 

for industry applications to differentiate between species and organs when these are mixed and 

passed through the platform. 

 

Fig. 16. Model metrics for the classification of organs from sheep and cattle by both species and type 

using a visible (VIS) hyperspectral sensor with partial least squares discriminant analysis (PLS-DA), 

linear discriminant analysis (LDA) and random forest (RF). 
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Fig. 17. Model metrics for the classification of organs from sheep and cattle by both species and type 

using a short-wave infrared (SWIR) hyperspectral sensor with partial least squares discriminant 

analysis (PLS-DA), linear discriminant analysis (LDA) and random forest (RF). 
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Fig. 18. Model metrics for the classification of organs from sheep and cattle by both species and type 

using a combination of visible and short-wave infrared hyperspectral sensors (COMB) with partial 

least squares discriminant analysis (PLS-DA), linear discriminant analysis (LDA) and random forest 

(RF). 

 

6.3. Data processing 

Spectral data pre-processing before prediction model development using different machine learning 

approaches may be necessary to improve the accuracy of the predictions (Zeaiter et al., 2005). For 

example, mathematical treatments that may assist in IMF quantification include outlier detection 

and removal, absorbance transformation, standard normal variate (SNV), detrending and centred 

moving average (Patel et al., 2021), and multiplicative scatter correction (Goi et al., 2022). The first 

experimental chapter (Chapter 2) used the Beer-Lambert Law (𝑎𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 =  𝑙𝑜𝑔(
1

𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒
)) 
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(Zeaiter et al., 2005) followed by Cubist regression to develop prediction models which is commonly 

used for NIRS data in soil (Minasny & McBratney, 2008). However, there was no attempt to evaluate 

different statistical approaches for pre-processing the spectra or to use alternate machine learning 

methods to develop the prediction models. Similarly, different mathematical treatments to pre-

process spectra were not explored in Chapter 3, which simply used absorbance spectra for both NIRS 

and Raman with SNV. Derivatives and smoothing were not used in either Chapter 2 or Chapter 3. 

 Chapter 1 stated that not every mathematical treatment improves the accuracy of the 

calibration model followed with leave-one-out cross-validation. However, multiple pre-processing 

methods should be explored to develop models with optimal performance onto larger data sets. 

Results for devices encompassing shorter NIR wavelength ranges (900–1700 nm) such as the 

NIRvascan (Chapters 2–3) and the SWIR HS sensor (Chapters 4–5) have been shown to have 

comparable accuracy to devices with longer wavelengths (Chapter 2). Furthermore, Shackelford et 

al. (2004) recommended trimming the spectra outside the vis-NIRS range of 450–1400 nm because it 

showed more accurate results than 350–2500 nm. Similar results were found after selecting regions 

of Raman spectroscopy for differentiation instead of the entire Raman spectrum (Logan et al., 

2020a; Zając et al., 2014). Short-wave NIR spectra (750–1100; Byrne et al., 1998, and 750–1300 nm; 

Shackelford et al., 2004; 2005) have been shown to outperform the longer-wave spectra in meat 

quality and discrimination analyses. However, these shorter wavelength ranges could provide 

further increases in prediction accuracy if appropriate pre-processing methods are used to remove 

spectral noise, additive, and multiplicative effects (Dixit et al., 2017). Chapter 4 explored 

mathematical treatments for spectra pre-processing in the form of first and second derivatives and 

compared reflectance and absorbance spectra. The Savitzky-Golay filter was trialled although it did 

not smooth the spectra to the same extent as centred moving average (Fig. 19). In most cases the 

most accurate model was absorbance with first derivative and as a result this pre-processing method 

was used in Chapter 5. However, the differences in the accuracy of the predictions with different 
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data pre-processing methods were not large in most instances and therefore, data pre-processing 

may not be critical in all cases. 

 

 

Fig. 19. Spectra from Chapter 4 (n = 3) after undergoing different smoothing treatments: a) raw VIS; 

b) centred moving average of VIS; c) Savitzky-Golay filtered VIS; d) raw SWIR; e) centred moving 

average SWIR; f) Savitzky-Golay filtered SWIR. 

 

 Wadoux et al. (2021) suggested that the presence of moisture may confound the 

measurements of chemical constituents of soil using NIRS, with soil products frequently dried prior 

to chemical determination. Drying of meat is impractical, although it is the method used prior to 

determination of IMF and CP by AOAC official methods (Helrich, 1990; Chapter 2). Equations 

developed for removal of moisture effects such as external parameter orthogonalization (EPO) may 

be applicable for use in fresh meat studies, as these have been previously used in studies on fruit 

regarding temperature effects (Roger et al., 2003) and soil regarding moisture effects (Minasny et 

al., 2011). The latter study used laboratory conditioned (air-dried) samples as their calibration 

dataset and field (fresh) samples as their validation dataset (Minasny et al., 2011). The effect of 

ambient temperature variations on meat in NIRS studies have not been analysed (Dixit et al., 2017), 

although maintenance of a constant temperature could improve the precision of predictions, e.g., an 
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abattoir boning room. Similarly, the selection of Cubist regression modelling in Chapter 2 followed 

improved predictions compared to PLSR in soil (Minasny & McBratney, 2008; Tang et al., 2020), 

whereas the use of RF discrimination modelling followed improved classifications of rice cultivars 

compared to PLS-DA (Kong et al., 2013). Bootstrapping was used as the resampling method for the 

spectral data in Chapter 2, and this can be additionally used prior to PLSR analyses (known as 

bagging PLSR) through use of randomly generating multiple datasets and prediction models with the 

predictions averaged over several bootstrapped samples to improve accuracy (McBratney et al., 

2006). 

 It is clear from the results of the present thesis that prediction of chemical composition of FI 

meat was the weakest of the pilot experiments conducted because most precision and accuracy 

metrics (r2, RPD) did not meet standards for even rough screening (r2
val < 0.60; RPD < 2.0; Williams, 

2001). Therefore, further research with larger datasets with the same sensor may not be warranted 

although sorting samples into groups by IMF content and trimming and pre-processing of spectra 

may improve the accuracy of the prediction models developed. Similarly, MSA marbling score and 

DOF did not meet these minimum standards for rough industry screening (Chapter 3). This is 

disappointing due to the potential of the smartphone NIRS sensor as an authentication tool (Chapter 

3), and the performance of similar sized sensors for evaluating IMF in prior studies (Chapter 1; Table 

2). These sensors (Texas Instruments DLP NIRScan Nano, JDSU Micro NIR Pro, SCiO), each weighing 

less than 100 g, showed r2 on the validation dataset between 0.62 and 0.79 for IMF concentration in 

FI meat (Goi et al., 2022; Patel et al., 2021; Pham et al., 2018). Moisture was predicted between r2
val 

of 0.70 and 0.84, although CP and pH showed RPD below 2 (Goi et al., 2022; Patel et al., 2021). It 

remains to be seen whether analysis over several sampling days would improve the accuracy and 

precision of the prediction models, as suggested in previous studies (Dixit et al., 2017; Williams et al., 

2017). 
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 In contrast, the use of a smartphone NIRS sensor to classify beef as grass-fed or grain-fed 

showed predictions with high accuracy, particularly when scanning the lean surfaces of steaks 

(Chapter 3). This could allow for a protocol to be developed for processors, retailers, and consumers, 

supported by the fact that the NIRS sensor in the present thesis scanned steaks through plastic wrap 

without differences. Goi et al. (2022) used a smaller NIRS sensor and scanned steaks at 1 cm from 

the meat sample, whereas other studies have determined IMF using non-contact multi-sensory 

systems (Dixit et al., 2021; Hitchman et al., 2021). The present thesis determined grass- or grain- 

feeding regime using the non-contact multi-sensory system from Chapters 4 and 5 (Table 21; 

Coombs et al., 2021c). More studies are required to determine the effects on model statistics 

between different muscles, and effects on acquiring spectra from regions of interest (ROI) on entire 

commercial primal cuts (AUS-MEAT, 2005) instead of steaks cut from these, as they are small 

enough to be scanned through the system yet have increased relevance to processors and retailers. 

Furthermore, the ROI from the two HS imaging chapters (Chapters 4–5) were relatively small (7 x 7 

px), questioning whether these constitute an adequate representative sample. Numbers of ROI per 

sample were also based on the organ’s size. This method could be of use in the future as it allows for 

specific diseased regions of an organ to be marked-up for the algorithm to identify. Alternatively, 

algorithms could scan entire organs and then search for abnormal regions, which could be assisted 

by X-ray spectroscopy. Similarly, identifying different components of an organ sampled from the 

abattoir such as lymph nodes, fat, and bile ducts could assist in identification of the organ, as well as 

detection of defects, diseases, or abnormalities. However, this would require larger ROI such as 

marking-up entire organs from an HS image which has been done in prior studies (Elmasry et al., 

2012; Manley, 2014; Nakariyakul & Casasent, 2009). This may be the most likely method to be 

trialled in subsequent studies and compared against the pilot studies of the present thesis. Another 

area of future research and development is computer vision to analyse not only spectral signature 

but also shape analysis and perhaps even 3D reconstruction of scanned organs (Xu & Sun, 2017; Zia 

et al., 2015). Prior to deployment in the meat industry, further work is also required in obtaining 
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optimal HS images where the object of interest is entirely visible and clearly seen, which can be time 

consuming when considering the multitude of sizes, shapes, colours, and a moving conveyor belt 

providing variation (Elmasry et al., 2012; Prieto et al., 2017). As previously mentioned, the use of 

multi-energy X-ray data to develop upon existing classification models is also encouraged and a few 

examples from work in the present thesis are presented in the section below. 

 

6.4. Potential value of X-ray imagery 

Hyperspectral sensors can only measure the electromagnetic radiation from the surface of products 

and thus, cannot measure the characteristics inside organs to detect defects or abnormalities below 

the surface. However, the multi-sensory platform of the present thesis also collected data from a 

multi-energy X-ray sensor which can penetrate tissues much further than the devices employed in 

the prior chapters, where penetration was in the mm range (Zou et al., 2016). The platform contains 

six X-ray sensors that penetrate at different depths and could identify abnormalities that the HS 

sensors cannot. Unfortunately, there was limited time in the present thesis to analyse and present 

the large datasets that were collected. Therefore, this section presents some examples of the data 

collected to demonstrate potential applications in the meat industries which could be above and 

beyond the HS sensors. 

 Based on visual inspection, several multi-energy X-ray attenuation (MEXA) images generated 

by the multi-sensory platform showed the shape and features of organs, and in some cases, allowed 

for the marking-up of defects such as caseous lymphadenitis (CLA) (Fig. 20). In Fig. 20B, the MEXA 

image shows an uncut CLA lesion that was felt during palpation by inspectors at the abattoir and was 

then confirmed by veterinary pathologists after examination (Fig. 20A). On the other hand, Fig. 21 

shows that in other organs such as kidney with pyelonephritis, the defect is not noticeable to the 

naked eye, although it may become apparent following image analysis or if dissected organs showing 

the lesion are scanned (i.e., in Fig. 21D). However, the MEXA image of the defective kidney (Fig. 21E) 
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appears lighter in colour than the healthy kidney passed for human consumption (Fig. 21B). This 

anecdotal information suggests that diseases may cause a change in tissue density that may be 

reflected in X-ray absorption. This data could allow the development of algorithms with threshold 

values for heart, liver, lung, kidney, and different defects that could replace palpation in the abattoir. 

Interestingly, these differences in absorption have been found to detect foreign bodies in food 

products (Zou et al., 2016) and therefore, this device could also be used to detect foreign bodies 

such as needles from vaccinations or other metal bodies. With a more comprehensive dataset, 

differences in pixel value across an organ or ROI within an organ can assist in detecting organs with 

defects that may be rejected by the processor. Further preliminary exploration into the use of MEXA 

for organ differentiation by type and health status could lead to commercialisation of multi-sensory 

platforms and their installation in processing plants. 

 

 

Fig. 20. A) Photograph of unprocessed sheep lung; B) Photograph of same sheep lung post-incision; 

and C) Multi-energy X-ray (MEXA) image of the unprocessed sheep lung showing a caseous 

lymphadenitis (CLA) lesion. 

 

A) B) C) 
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Fig. 21. A) Photograph of sheep kidney passed as fit for human consumption; B) MEXA image of 

sheep kidney passed as fit for human consumption; C) Photograph of sheep kidney rejected at the 

abattoir due to defects; D) Photograph of bisected kidney showing focal lesion suggestive of 

pyelonephritis; and E) MEXA image of rejected kidney with pyelonephritis. 

 

 Finally, another area of research and development with the multi-sensory platform is the 

identification of the type of disease rather than just normal vs. abnormal. For example, this could 

include the differentiation between lung abscesses, CLA, lung consolidation, and pleurisy as 

described by Blakebrough-Hall et al. (2020). Similarly, abnormalities in livers could be differentiated 

between fluke worms, abscesses, and different types of hepatitis. This may require more advanced 

data analytics than those used in the present thesis including shape measurements integrated with 

spectral and intensity information. The development of a large database or library will be required to 

achieve this which should contain the number of samples required for each type of defect or 

disease. 

A) B) 

C) E) D) 
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6.5. Conclusion 

 The present thesis concludes that the novel spectroscopic sensors evaluated are promising 

to classify meat by feeding regime, and organs by type and disease status. However, larger datasets 

and refinement of the methodology are required to validate these exploratory results, such as 

number of scans and ROI required for repeatability, and selection of specific regions with defects 

within an organ. This may provide greater accuracy, precision, sensitivity, and specificity metrics to 

support subsequent deployment of smartphone NIRS sensors and multi-sensory imaging platforms 

containing VIS and SWIR HS sensors in the meat industries. Further research should focus on 

developing an automated workflow for analysis, detection, and sortation of products. Based on the 

results of the present thesis, smartphone NIRS sensors could be used in the industry as tools to 

validate feeding regime of beef after the results of the present thesis are validated with larger 

datasets. However, it is worth noting that installation of larger multi-sensory platforms would 

provide greater long-term benefits despite the upfront cost due to their ability to provide valuable 

information on the verification of feeding regime, health assessment, and organ identification 

without making contact with samples. Further testing of both X-ray and HS imaging within the multi-

sensory platform on larger datasets can extend to predicting chemical composition such as fat and 

protein contents of meat samples. It is therefore concluded that the novel sensors explored in this 

thesis have enormous potential to automate the meat grading, authentication, and offal sortation 

and inspection processes that take place in the meat processing industry and afterwards such as 

retail.  
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