

final report

Project code: BFGEN.027

Prepared by: Julius van der Werf

The University of New

England

Date published: August 2005

ISBN: 9781741917963

PUBLISHED BY

Meat & Livestock Australia Limited Locked Bag 991 NORTH SYDNEY NSW 2059

Development of a Crossbreeding System Evaluation Tool for Cattle Producers

Meat & Livestock Australia acknowledges the matching funds provided by the Australian Government to support the research and development detailed in this publication.

This publication is published by Meat & Livestock Australia Limited ABN 39 081 678 364 (MLA). Care is taken to ensure the accuracy of the information contained in this publication. However MLA cannot accept responsibility for the accuracy or completeness of the information or opinions contained in the publication. You should make your own enquiries before making decisions concerning your interests. Reproduction in whole or in part of this publication is prohibited without prior written consent of MLA.

1. Executive Summary

A spreadsheet was developed with multiple sheets, that allow comparison of different crossbreeding systems from different combinations of Australian cattle breeds. The program allows comparison of pure breeding systems, 2-way crossing systems and 3-way crossing systems. The comparison is based on system efficiency, and considers input and output from production of steers, fattening heifers and culled cows. The program allows the user to vary the number of replacement heifers from their own herd. The input parameters (related to weights at fixed ages, fat scores, reproduction, mortality, and associated heterosis) are read from a table and a herd model is used to calculate the number of animals used for replacement and slaughter. Growth curves are derived from weights, and the feed input needed for growth and maintenance is derived and aggregated at a herd level on a monthly basis. A summary sheet allows selection of breeds, and calculation of key system parameters, such as feed needed, revenue from slaughter animals, days to slaughter, feed per kg of meat produced, and other derived parameters.

The current version of the tool should be seen as a demonstration version, and can be used as a basis for further development. Further development needs to involve 1) improved logistics in the 3 way crossing system, 2) the addition of a composite module, 3) road testing and fine tuning the technical and economic parameters 4) adding into the growth curve the different degrees of fatness of the breed combinations used, 5) an interface that allows consultants and breeders unassisted use of the tool. The fifth point needs to involve discussions with a consultative group comprising practically-oriented researchers and end users.

2. Description of the crossbreeding tool

A brief description is given here. Examples of the different sheets are in the Appendix. The program uses mainly macros (Visual Basic code) for most calculations, but a number of tables are based on linked formulas on the sheets (i.e. 'Excel code')

The different SHEETS are

Input & results summary

- Sets the production system parameters and allows choosing breeds.
- It chooses base input parameters, such as target weight, mating date, feed price, etc.
- If a variable is changed, it show 'update all' and recalculates the Tables.
- Provides a summary of the system efficiency and other key parameters and it gives a comparison among different crossing types (1 pure, 1 2WC, one 3WC)

Details about each of the three mating types are in the separate sheets for each system:

- Straightbred
- 2breed cross
- 3breed cross

These sheets give:

- The numbers in each system, the weights and the prices
- It shows income and cost per animal type (steer, females, cows), on a per animal basis, and also on a per breeding cow basis (more important)
- A picture with animal number in each category (replacements, fattened, etc.)
- A graph that gives the feed requirement pattern over the year (per month).
- Detailed Tables with number of animals per age class, and feed requirement for each month of the year. There are Tables for cost per parity to determine culling and replacement rates. These can be used to check the system, but are not critical.

Examples are given in the appendix.

Database

Contains the breed means for all traits as well as heterosis estimates (all were obtained from Wayne Upton, AGBU). For traits and breeds, see Appendix.

Growthcurve

This sheet is not actively used by the program, but it illustrates how growth curves are determined and from that feed costs.

The current version of the tool should be seen as a prototype and be used for demonstration of principles. It can be used as a basis for further development. There is currently no detailed manual, other than this document.

3. Recommendations for further development

Further development is recommended to:

- 1) improve the logistics in the 3 way crossing system,
- 2) develop a composite module,
- 3) road test and fine tune the technical and economic parameters
- 4) add into the growth curve the different degrees of fatness of the breed combinations used.
- 5) discuss and develop an interface that allows consultants and breeders unassisted use of the tool.

Re 1) the numbers in the 3-breed cross.

- For a purebred I use a given number of breeding females e.g. N=1000
- For a 2-breed cross, I inseminate a fraction with terminal sires. Need a certain amount for replacement, although there is an option to purchase replacements
- For a 3 breed cross this all becomes more complicated. I have not yet finished the picture (in yellow), and thus the full sheet.

Re 3)

We need to have a look at the price premiums (at the end of database-sheet). There are now very high premiums for e.g. Charolais.

The data base also needs further scrutiny and discussion. Sometimes it seems a bit rough to have the same heterosis % for all traits. For some breeds (e.g. Jersey) the 600 day weight (A+M) can be higher than mature weight.

Re 4)

Currently, I am only looking at target weight. I have not yet implemented fat curves and target both weight and fat. This will often result in compromises or 'unachievable' so needs a bit of thinking.

Re 5)

This needs to involve a consultative group with practically oriented researchers and end users (e.g. Bill Kiernan, Wayne Upton, Bill Hoffman, Don Nicol). Suggestions about possible improvements that could be made;

- hardwire a few scenarios (target weights and muscle)
- show more genotypes (combinations) of one crossing type at the same time
- even show the best genotype or the top 5 for a given market.
- Profit per enterprise rather than per unit of input

Appendix 1 - Description and examples of different sheets

SHEET: Input & Results Summary

- 1. Gives a comparison among different crossing types (1 pure, 1 2WC, one 3WC)
- 2. (later we should here display also more of each type)
- 3. This sheet contains base input parameters, such as target weight, mating date, feed price, etc.
- 4. If a variable is changed, it show 'update all' and recalculates the Tables

Main System	Variables		Other variables					
herd size	1000			Feed content MJME/ton	10000			
target weight steers (kg)	450	1	update all	Mating date	15-Nov			
target P8fat steers (mm)	5	1	update all					
price \$/kg live steers	2.00				,			
feed cost \$/MJME	0.01	Ī						

It also allows choosing a breed or combination of breeds (choose from a roll down list) and will ask to click on "update". There is also a choice to buy heifers rather than breeding them.

straight breeding						
breed	Shorthorn					
percent own heifers (%)	100%					
purchase price per heifer	900					
two way cross						
terminal sire breed	Angus					
maternal breed	Friesian					
percent own heifers (%)	100%					
purchase price per heifer	900					
three way cross						
terminal sire breed	Charolais					
maternal grandsire breed	Shorthorn					
maternal granddam breed	Jersey	! update				

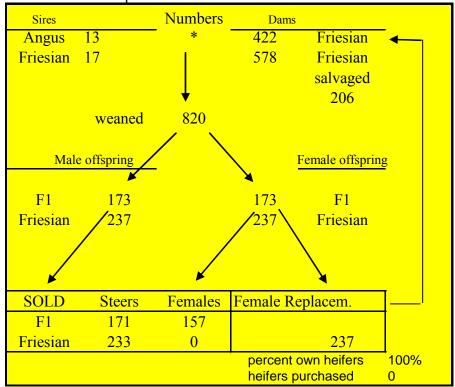
A summary of each system;

	profit per breeding cow	income \$ per tonne feed	kg meat/ MJ feed	\$\$ efficiency	Feed require (tonnes)
straight breeding	85	113	58.87	112.6%	6,704
two way cross	96	113	53.66	113.2%	7,318
inal sire breed					-
three way cross	381	155	57.56	155.0%	6,929

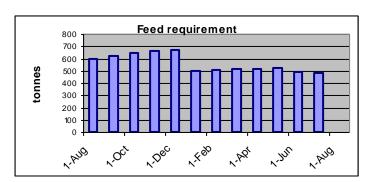
With a bit more detail per animal group;

	days to	steers		heifers			cows
	slaughter	nr sold	\$/margin	nr sold	\$/margin	nr sold	\$/margin
total	512	428	491	239	403	166	705
total	305	403	632	157	528	206	1039
							0
'.'	410	233	641	0	547	206	1039
	total total F1	slaughter total 512 total 395 F1 375	slaughter nr sold total 512 428 total 395 403 F1 375 171	slaughter nr sold \$/margin total 512 428 491 total 395 403 632 F1 375 171 620	slaughter nr sold \$/margin nr sold total 512 428 491 239 total 395 403 632 157 F1 375 171 620 157	slaughter nr sold \$/margin nr sold \$/margin total 512 428 491 239 403 total 395 403 632 157 528 F1 375 171 620 157 528	slaughter nr sold \$/margin nr sold \$/margin nr sold total 512 428 491 239 403 166 total 395 403 632 157 528 206 F1 375 171 620 157 528 0

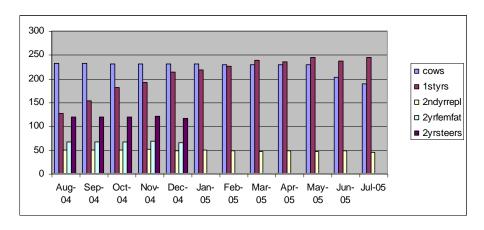
Details about each of the three mating types are in the spreadsheets


Straightbred 2breed cross 3breed cross

These sheets give the numbers in each system, the weights and the prices. It shows income and cost per animal type (steer, females, cows), on a per animal basis, and also on a per breeding cow basis (more important).


(Alternative is to do this on a per DSE or tonne of feed basis)

		2 WAY	CROSS B	REED	ING SY	STEM	
Angus	X Friesian	dam breed	F1 offspring		total cows	1000	
		Friesian	Angus			per individ	lual
Output			χ Friesian			income	cost
Steers	Nr sold per year	233	171		per steer	1006	374
	Weight	451	449	р	er fat heifer	895	367
	Price/kg	2.26	2.20		per cow	1369	2096
Heifers	Nr sold/yr	0	157	per repl	acem heifer	-	764
	Weight	429	426				
	Price/kg	2.16	2.10				
Cows	Nr sold/year	206	0			on a herd basis	, incl. culled
	Weight	700	0			per an	n u m
	Price/kg	1.96	0.00			per breed	ing cow
Input				•	steers	406	157
% heifers	% heifers			_	heifers	140	63
steers days	s to slaughter	410	375		cows	282	316
\$\$ feed you	ung stock till 1st calv	764		own	young stock		195
	fatten a steer	379	367	purcha	ased heifers		0
\$\$ feed / m	ature cows per year	330			total	828	732
total feed ir	nput MJME	73,184,154	Profit per breeding cow			96	
total feed in	nput tonnes	7,318	\$\$ efficiency			113.2%	
			cost per tonr	ne feed		100	
			\$income/tonne feed			113	
	update		total tonnes meat sold 392.7				
			kg meat sold/ 10GJ feed			53.66	
			kg meat solo			53.7	


and there's also a picture:

It gives also a feed requirement pattern over the year, i.e. per month.

but maybe the next is more informative (next is per animal type, number x requirement

There are detailed tables with number of animals and feed requirement for each month of the year. There are also tables for cost per parity to determine culling and replacement rates. These can be used to check the system, but are not critical.

Flow and build up of sheets is through macros

For a given genotype (either pure, cross or 3-way cross)

 Read in from database and display trait means, heterosis is accounted for, price premiums are derived from a table in the database.

more columns if there are F1 and 3WC

	dam	F1 offspring	
	Friesian	Angus X	Friesian
Cow attributes			
Cow Mortality Rate %	3		
Cow Cull Rate non-repro %	15		
Max parities	7		
Bull Percentage	3		
Weaning Rate/calving (%)	82		
Age at first calf	850		
Intercalving Interval	380		
Birth Weight	42	42.64	
Mature Weight	700	663	
Steer Attributes			
Weaning Wt 200d	270	297	
Yearling Wt 400d	415	435	
Final weight 600d	583	593	
P8Fat (mm)(steer @ 300kg)	10	11.5	
P8Fat (mm) (at bull @500 days)	2.5	3.5	
IMF% (steer @ 300kg)	4.50%	5.00%	
Marbling Score (1-5 - steer @ 300kg)*	1.3	1.5	
Muscle score A-E			
Muscle Score (A-E+ = 15 pnt scale)#	6	7	
MQ4 Score	52	56	
price premium muscle	-0.2	-0.1	
price premium marbling	0.46	0.3	

- 2. Fit growth curve through weights (see appendix)
 - More curves are fitted if there are F1 and 3WC
 - From each curve determine days to reach final weight (for steers) determine feed requirements for each month for each type of animals.
 - Those are averaged over genotypes if there are more.
 - This feed requirements are summarized in a working table, and brought to the summarizing tables described before.

cows	1yrs	2ndyrrepl	2yrfemfat	2yrsteers	Total	
3162	2744	1115	98	200	7318	total tonnes required
3.162	2.744	1.115	0.098	0.200	7.318	tonnes required per breeding cow
9.17	9.28	12.73	10.44	10.45		kg/animal/day
27511	27850	38190	31323	31349		\$/animal/mo
cows	steers	fat hfrs	youngstock			
3.162	1.572	0.632	1.953	7.318 tonnes per breeding co		tonnes per breeding cow/year
316.16	157.16	63.20	195.32		731.8	\$\$ per breeding cow/year
3.301	3.390	3.402	3.790	per animal/year tonnes		
9.04	9.29	9.32	10.38	per animal per day kg		
0.90	0.93	0.93	1.04	per animal per day \$\$		
330	339	340	379	per animal \$\$/year		
27.13	27.86	27.96	31.15	per animal \$\$/mo		

Database

Breeds used:

Angus

Shorthorn

Hereford

Brahman

Charolais

Limousin

Jersey

Friesian

Traits considered;

•

Reproductive Traits

Cow Mortality Rate %

Cow Cull Rate repro failure %

Max parities

Bull Percentage

Weaning Rate/calving (%)

Age at first calf - days

Intercalving Interval days

Weight Traits

Birth Weight Kg

200 day Weaning Wt Kg

400 day Yearling Wt

600 day Final Wt

Mature Weight Kg

Meat Quality Traits

P8Fat (mm)(steer @ 300kg)

P8Fat (mm) (at bull @500 days)

IMF% (steer @ 300kg)

Marbling Score (1-5 - steer @ 300kg)*

Muscle score A-E

Muscle Score (A-E \pm = 15 pnt scale)#

MQ4 Score

Breed effects as well as maternal breed effects are provided.

Heterosis effects are considered the same for the three trait groups as well as for all breed combinations.

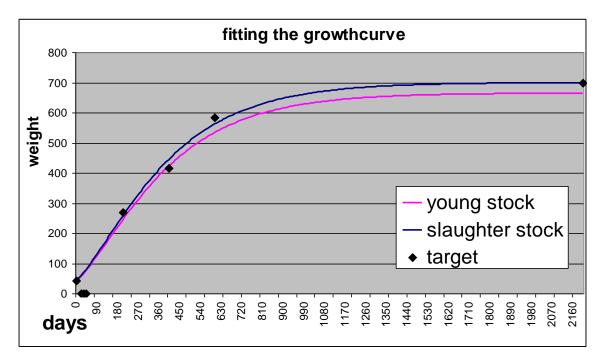
Appendix 2 - Growth curves and feed requirements

Given weights at days 0, 200, 400, 600 and mature weight, we fit a best curve, using a genetic algorithm to find the optimal parameters.

The equation is

Weight at time t (t in days)
$$W(t) = MW.[1-(1-(BW/MW)^{(1/\alpha)})e^{\beta.t}]^{\alpha}$$

Where BW is birth weight and MW = mature weight. Hence, the best fit is solved for only 2 parameters.


From the growth curve, the feed requirement is determined as energy (E)

Where

$$E_{\text{growth}}$$
 on day $t = .14 * [W(t) - W(t-1)] \cdot (6.7 + 20.3 / (1 + Exp(-6 * W(t) / MW - 0.4)))$

 $E_{maintenance}$ on day t = 10.38 + 0.1138 .W(t) in MJ of ME.

There is a distinction between a growth for fattening animals and growth for replacements. I have assumed that MW of replacements is 95% of fattening animals. Maybe there should be an additional distinction between fattening males and females.

