

final repport

Project code: B.LSM.0060

Prepared by: Christopher M Strickland, Clair L Alston,
Graham E Gardner

Date published: September 2015

PUBLISHED BY
Meat & Livestock Australia Limited
Locked Bag 991
NORTH SYDNEY NSW 2059

ished by

Project code: B.LSM.0060

Prepared by: Christopher M Strickland, Clair L
Alston, Graham E Gardner

Date published: September 2015

PUBLISHED BY
Meat & Livestock Australia Limited
Locked Bag 991
NORTH SYDNEY NSW 2059

ished by

Meat & Livestock Australia acknowledges the matching funds provided by the Australian
Government to support the research and development detailed in this publication.

1.1.1.1.1.1

This publication is published by Meat & Livestock Australia Limited ABN 39 081 678 364 (MLA). Care is taken to
ensure the accuracy of the information contained in this publication. However MLA cannot accept responsibility for
the accuracy or completeness of the information or opinions contained in the publication. You should make your
own enquiries before making decisions concerning your interests. Reproduction in whole or in part of this
publication is prohibited without prior written consent of MLA.

Efficient Bayesian estimation of mixed
effects growth models

Report 1: Bayesian linear mixed
effects models

Christopher M Strickland, Clair L. Alston and Graham E. Gardner

0.1 Introduction
Mixed models, often described as a mixture of fixed and random terms, are used in
cases where the data are clustered due to subpopulations, such as sires in genetics
trials, years in trials that are conducted annually, assessors in experiments where
the person obtaining the measurements may be subjective, individual in experiments
that contain measurements in time on traits such as growth (longitudinal studies)
and where higher level terms are considered random. A mixed model handles the
different sources of error in data by treating the variation as within and between
clusters.

Demidenko (2004), Wu (2010) and Verbeke and Molenberghs (2009) provide
substantial references for these models in the frequentist framework, and provide
much of the mathematical foundations required for the Bayesian framework.
Sorensen and Gianola (2002) provide a comprehensive likelihood and Bayesian
outline of these models. Introductory level Bayesian methods are outlined by Carlin
and Louis (2009) and Hoff (2009).

Mixed models can be estimated in several Bayesian software packages, for
example; WinBugs J. et al. (2000) and library MCMCglmm Hadfield (2010) in the R
package, however, the size of the data common in animal trials makes the use of this
software impractical. We are developing a module which uses PyMCMC Strickland
et al. (2012), to efficiently estimates parameters of the Bayesian linear mixed model
when sample size is large.

0.2 Models and Methods
Denoting the (N × 1) vector of observations y, then the linear mixed model may be
represented as,

y = Xβ + Zu+ ε; ε ∼ N
(
000, σ2IN

)
(1)

where X is an (N × k) matrix of regressors, β is a (k × 1) vector of fixed effects,
Z is an (N ×m) matrix of regressors for the random effects, u is an (m× 1) vector
of random effects and εεε is an (N × 1) normally distributed random vector, with a
mean vector 000 and a covariance matrix σ2IN . Here IN refers to an N−dimensional
identity matrix. The random effects are defined such that

u ∼ N
(
000,D−1

)
, (2)

where D is an (m×m) precision matrix. To complete the model specification, we
need to define priors for β,D and σ. We assume that

β ∼ N
(
β,V−1

)
and

σ ∼ IG
(ν
2
,
s

2

)
, (3)

where ν is the prior degrees of freedom and s is the prior scale term for the inverted
gamma distribution. We assume that u can be separated into K independent parts,

ui, where
ui ∼ N

(
0,D−1

i ⊗ Imi

)
,

where the variance of ui,D
−1
i ⊗ Imi , implies that D = ⊕i (Di ⊗ Imi) and ⊕ refers

to the matrix direct sum and ⊗ is the Kronecker product. It is further assumed that
the (li × li) precision matrix Di, for i = 1, 2, . . . ,K, is assumed to be distributed
following

Di ∼ Wishart (wi,Si) , (4)

where wi is the degrees of freedom parameter and Si is the inverse of the scale
matrix, for the Wishart distribution. The precision matrix Di models the correlation

between the li components in ui =
(
uT
i,1,u

T
u,2, . . . ,u

T
i,li

)T

, where each component
ui,j , for j = 1, 2, . . . , li is a (Ji × 1) vector and Ji =

mi

li
.

It is interesting to note that the only difference between the random effects, u, and
the fixed effects, β, is the extra layer of hierarchy in the prior specification, of the
random effects.

The generic form, for the linear mixed model in (1), is a compact representation
that nests many useful forms, including the specific models used in case studies 1
and 2, which we now describe.

0.2.1 MCMC estimation

The aim of Markov chain Monte Carlo (MCMC) estimation is to sample from the
joint posterior distribution for the unknown parameters, β,u,D and σ. An MCMC
scheme at iteration j is as follows:

Algorithm 1
1. Jointly sample β(j) and u(j) from p

(
β,u|y,X,Z,D(j−1), σ(j−1)

)
.

2. Sample D(j) from p
(
D|y,X,Z,β(j),u(j), σ(j−1)

)
.

3. Sample σ(j) from p
(
σ|y,X,Z,β(j),u(j),D(j)

)
.

Step 1, of Algorithm 1, is undertaken using standard Bayesian linear regression
theory. Observing that Equation (1), once conditioned on D, is simply a standard
Bayesian linear regression model; see Chapter Ref: StricklandLinearRegression

for specific details. If we define W = (X;Z) and δ =
(
βT ,uT

)T

, then we can
express Equation (1) as

y = Wδ + ε

and it follows that
δ|W, σ ∼ N

(
δ,H

)
, (5)

where δ =
(

WTW
σ2 +H

)−1 (
WTy
σ2 +Hδ

)
, with δ =

(
βT ,0T

)T

and H =[
V 0
0 D

]
. It is important to note that

Step 2, of Algorithm 1, takes advantage of the conjugacy of the prior specification
for D, in Equation (3). To sample D, we make use of the fact that the blocks, Di,
described in Equation (4) are independent of each other. We therefore sample each
precision matrix, Di, for i = 1, 2, . . . ,K, separately, using

Di|ui ∼ Wishart
(
wi,Si

)
,

where wi = wi + Ji and Si = Si +
∑Ji

j=1 ui,ju
T
i,j .

Step 3, of Algorithm 1, also takes advantage of the conjugacy of the prior
specification of σ, in Equation (3). In this case the posterior for σ is given as

σ|y,X,Z,β,u ∼ IG

(
ν

2
,
s

2

)
,

where ν = ν +N and s = s+ (y −Wδ)
T
(y −Wδ) .

This method is coded in python using sparse matrix techniques to ensure efficient
computation.

0.3 Case study

0.3.1 Large Data Set

The data set which will primarily be the focus of this work is an extensive 5 year
study of growth in newborn lambs. There are 17525 individuals in the study, with a
total of 141206 measurements of weights taken over time.

The model that is required to be fitted in this case is
WT = Constant +poly(AGEATOBS,3)+AGEOFDAM+SEX+SIRETYPE+FLOCK+drop+btrt+dambreedST

+poly(AGEATOBS,3):AGEOFDAM +poly(AGEATOBS,3):SEX +poly(AGEATOBS,3):SIRETYPE
+poly(AGEATOBS,3):FLOCK +poly(AGEATOBS,3):drop +poly(AGEATOBS,3):btrt
+poly(AGEATOBS,3):dambreedST +poly(AGEATOBS,3):pwwt +poly(AGEATOBS,3):pfat
+FLOCK:drop +FLOCK:SEX +FLOCK:btrt +FLOCK:SIRETYPE +FLOCK:dambreedST
+drop:btrt +drop:SIRETYPE +drop:dambreedST +SEX:btrt +SEX:SIRETYPE
+btrt:AGEOFDAM +btrt:SIRETYPE +btrt:dambreedST +pwwt +pwwt:pwwt
+pwwt:FLOCK +pwwt:btrt +pfat +pfat:pfat +pfat:btrt , random= sSire+dam:drop+us(1+poly(AGEATOBS,2)):id

This is a total of 311 fixed effects coefficients and 65430 random coefficients. The
sparseness of this model requires efficient statistical methods to compute the MCMC
estimates efficiently.

0.3.2 HCWT

In this report, we focus on a simpler example, Hot carcass weight (HCWT). This is
the weight of a carcase when it has had its non-usable meat products, such as head,

cmcm AGEATOBS

W
T

0

20

40

60

80

100

0 50 100 150 200 250 300

2007 2008

0 50 100 150 200 250 300

2009

2010

0 50 100 150 200 250 300

0

20

40

60

80

100

2011

Figure 1 Plot of weight against the age of the animal. Each year is represented in a separate
graph.

intestinal tract and internal organs removed, as well as the hide. This weight is taken
on room temperature carcases.

In this case study, the HCWT of 3282 animals has been recorded. Researchers
are interested in the effect of age at observation, sex, sire breed and body fat (and
possible interactions) on the hot carcase weight. However, as an observational data
set, these factors are highly unbalanced. For example, there are 1040 females and
2242 males and the 6 different breeds have samples sizes ranging from 164 to 1134.

Figure 2 (top) is a plot of hot carcase weight vs age. generally, these animals reach
maturity by around 150 days, and as such we would not be expecting a large response
in terms of growth in this data set. However, it can be observed that there may be an
increase in weight with age. However, the bottom plot indicates that other factors,
such as breed, may also account for this behaviour.

At first glance, there does not appear to be too much ”activity” in this data set,
however, the mixed model is used to investigate the contributions of the random
effects, as removing these may make the signal of the data clearer. There are several
factors that are likely to contribute to the overall variance, but are not of interest in
themselves. These factors, known as random effects, are sire (149), flock (15) and
the group in which the animals were slaughtered (kill group, 59). Figure 3 illustrates
the mean and range of hot carcase weights in each of these factors.

Apart from the obvious mean differences of HCWT between the 149 sires, it is
also possible that there may be a sire by age interaction, as shown in Figure 4.
These are data taken for a sub-sample of sires, and indicate that these sires may have
a different response in terms of weight gain with increasing age. For example, sires
1, 2 and 6 seem to have a clear increase with age, whereas sires 3, 4 and 5 seem to
have reached full maturity and are not increasing with additional age. Therefore, the
fixed effect of age may be ”blurred” by the different sires. In our analysis, we will
also test the importance of this random term.

0.3.3 Model for Case Study

The observed variable, HCWT, is modeled as

HCWT = β0 + Ageβ1 + Sβ2 + ASβ3 + Bβ4 + ABβ5 + PFPFPFβ6 + Zsuuus + Zfluuufl + Zkguuukg + ε,
(6)

where Age is the age of the sheep, S is the sex of the sheep, AS is an interaction
term between the age and sex of the sheep, B is the breed of the sheep, AB is an
interaction term between the age and the breed of the sheep, PF is the percentage of
fat in the sheep, Zs is an (N ×ms) design matrix for the random effects that defines
the sire of the sheep, Zfl is an (N ×mfl) design matrix for the random effects that
specifies the flock, Zkg is an (N ×mkg) design matrix for the random effects for
the kill group, and ε is the residual vector. The random effects, us, ufl, ukg, are

cmcm

200 300 400 500

15
20

25
30

35
40

Age (days)

H
ot

 c
ar

ca
se

 w
ei

gh
t (

kg
)

BLeicester Dorset Merino PMerino Texel WSuffolk

15
20

25
30

35
40

Sire breed

H
ot

 c
ar

ca
se

 w
ei

gh
t (

kg
)

Figure 2 Top: Plot of Hot carcase weight against the age of the animal at slaughter.
Researchers would like to know if additional age (after maturity) increases the carcase weight.
Bottom: Boxplot of hot carcase weight against sire breed, which is one of several factors which
may influence final weight.

cmcm

Kill group

H
ot

 c
ar

ca
se

 w
ei

gh
t

5 15 25 35 45 55

15
20

25
30

35
40

Sire

H
ot

 c
ar

ca
se

 w
ei

gh
t

10 30 50 70 90 110 130

15
20

25
30

35
40

Flock

H
ot

 c
ar

ca
se

 w
ei

gh
t

1 2 3 4 5 6 7 8

15
20

25
30

35
40

Figure 3 Top: Ordered plot of hot carcase weight (mean and range) against the kill group
for animals at slaughter. These groups contain unbalanced data in terms of the fixed effects
(Sire breed, age, sex) and can be seen to vary widely in mean and range. The grey dashed
line represents mean and range for whole data set. Middle: Ordered plot of hot carcase weight
(mean and range) against the individual sires for animals at slaughter Bottom: Ordered plot of
hot carcase weight (mean and range) against the flock from which the animals originated at
slaughter.

cmcm Age

H
ot

 c
ar

ca
se

 w
ei

gh
t

15

20

25

30

35

150 200 250 300 350 400

sire 1 sire 2

sire 3

15

20

25

30

35

sire 4

15

20

25

30

35

sire 5

150 200 250 300 350 400

sire 6

Figure 4 A selection of the sire response vs age against hot carcase weight.

further defined, such that

us ∼ N
(
0, d−1

s

)
,

ufl ∼ N
(
0, d−1

fl

)
,

ukg ∼ N
(
0, d−1

kg

)
. (7)

The design matrices Zs, Zfl and Zkg are designed in a similar fashion. As an
example, if we define the ith row of Zs as zTs,i then if the ith carcase belongs to
group j, where j ∈ {1, 2, . . . ,ms} , then set the jth element in zTs,i equal to 1 and
the remaining elements equal to zeros. For instance, if ms = 3 and the ith carcase is
from the second sire, then zTs,i =

[
0 1 0

]
.

The model in (6) and (7) can be expressed in terms of the general model
in (1) and (2), by defining X = (111N ;Age;S;AS;B;AB;PF) , where the generic
notation (A;B) is used to denote that the columns of A are concatenated with
the columns of B, and 1N is a vector of ones of order N. Further, define β =(
β0, β1, β2,β

T
3 ,β

T
4 ,β5, β6

)T

, Z =

 Zs 000 000
000 Zfl 000
000 000 Zkg

 , u =
(
uT
s ,u

T
fl,ukb

)T

and D =

 dsIms 0 0
0 dflImfl

0
0 0 dkgImkg

 .

The prior hyperparameters for this case study are defined as w = 10 and S =
0.01, for each random effect, β = 0,V = 0.01I15

0.4 The python library LMM
The class names LMM has been added to the PyMCMC library. The coding of
this class is relatively straight-forward and will be familiar to the commands animal
scientists are used to working with in R and SAS.

class LMM(LMM_Data):
"""Class for LMM (linear mixed model) class
arguments:

data - An list (or tuple) or dictionary of the data
observations - Position (if data is a list) or string (if data is a

dictionary) with gives specifies the position of the
vector of observations in data.

nit - The number of iterations to run the MCMC scheme. The default value
is 20000 iterations.

burn - The length of the burnin for the MCMC scheme. The default value
is 5000 iterations. These will be discarded from the 20000
iterations.

optional arguments:
fixed_effects - a list (or tuple) of the positions (data is a list)

or strings (data is a dictionary), of the fixed effects.
Note the special keyword ’CONSTANT’ can be used to

add a constant.

constant - Should be set to False if there is no constant in the
model (in the case factors are in the model. Otherwise
when the factors are constructed it is
either assumed that the user has defined one of the fixed
effects to be a contant or that they have used the
special keyword ’CONSTANT’.

random_effects - a list (or tuple) of positions (data is a list)
or strings (data is a dictionary), of the random effects.

factors - a list (or tuple) of positions (data is a list)
or strings (data is a dictionary), of the factors.

prior_fixed_effects - Is specified by a list. Currently the options
are, [’normal’, mean, precision], where mean, should
either be a vector of the same dimension of the number of
regressors, or a scalar, in which case the entire mean vector
will equal the scalar parameter value.

The precision, likewise, can be the entire precision matrix, or
a scalar, where the scalar case implies a diagonal precision
matrix where all diagonal elements are equal to the scalar. If
no prior for the fixed effects is specified a flat prior is
used.

prior_random_effects - Is specified by a list. The most simple case
is [’wishart’, nu, S], where nu is the degrees of freedom parameter
and S is in the inverse scale matrix for the Wishart distribution.
If the prior is specified as above each of the scale parameters for
the random effects will have the same prior, in which case S should
be a prior.

Alternatively, one may specify the prior completely. This is
best explained by an example. Suppose the list of random effects
are [’var1’, ’var2’, (’var1’, ’var3’)]. Suppose we want to
assume that the scale parameters for ’var1’ and (’var1’, ’var3’)
are correlated. In this case we would specify the prior as
[[’var2’,[’wishart’, nu1, S1]],
[(’var1’, (’var1’, ’var2’), [’wishart’, nu2, S2]]], where in the
case nu1, nu2 and S1 are scalars and S2 is a (2 x 2) precision
matrix. Note currently we only allow joint priors between a
random_efect and an interation with the same random effect.

NOTE: If not prior is specified a flat prior will be used for
each individual random effects.

prior_scale - Is specified as a list. One one option is currently
available. That is [’gamma’ ,nu, s], where nu is the degrees of
freedom parameter and s is the inverse scale parameter for the
gamma distribution. If no prior is specified a flat prior will
be used.

The class LMM is then imported into standard python code for use in a statistical
analysis. A typical python script file will look like the following

#Python code for hot carcase weight example 2

import data_manipulation as dm
from lmm import LMM

data = dm.data_dict(’Data/HCWTPyMCMC.txt’, ’ ’)
#functions convert names variables to floating point arrays in dictionary
dm.float_dict([’AGEATOBS’,’HCWT’, ’PFAT’], data)

#functions enumerate dictionary for named variables
#Note returns a dictonary that maps the name to the index

map_name_index = dm.enum_dict([’FLOCK’, ’Killgroup’, ’SEX’,’SIREBREED’,
’sSire’], data)

#Prior fixed effects
#Normal prior with a mean vector = 0. and a precision = diag(0.1* np.eye(k)
#where k is the number of regressors
prior_fixed = [’normal’, 0., 0.01]

#prior for random effects
prior_RE = [’wishart’, 10, 0.1]

#instantiate class for linear mixed model
lmm = LMM(data, ’HCWT’, 10000, 1000,

fixed_effects = [’CONSTANT’, ’AGEATOBS’, ’SEX’, ’SIREBREED’,
’PFAT’, (’AGEATOBS’, ’SEX’),
(’AGEATOBS’, ’SIREBREED’)],

random_effects = [’sSire’, ’FLOCK’, ’Killgroup’],
factors = [’SIREBREED’, ’SEX’, ’sSire’, ’FLOCK’,

’Killgroup’],
prior_fixed_effects = prior_fixed,
prior_random_effects = prior_RE)

lmm.output()

0.5 Data Analysis and Results
Hot carcase weight analysis

The default output for the linear mixed model analysis is as follows. The runtime
output bar which appears after the burnin and iteration information allows the user
to see how far the job has progressed, giving an indication of the expected end time.

The user is also informed of the number of random effects to be estimated.
The time the MCMC sampler took to run is provided followed by the parameter
estimates.

Number of random effects = 216
PyMCMC is now running

The number of iterations = 10000
The length of the burnin = 5000

[##]

--

The time (seconds) for the MCMC sampler = 33.40
Number of blocks in MCMC sampler = 3

mean sd 2.5% 97.5% IFactor
beta[0] 16.6 0.531 15.6 17.7 3.57
beta[1] 0.0161 0.00214 0.012 0.0202 3.56
beta[2] 2.16 0.45 1.26 3.01 3.56
beta[3] 10.7 0.693 9.3 12 3.75
beta[4] 3.52 0.517 2.54 4.57 3.54
beta[5] 9.16 0.678 7.74 10.4 3.56
beta[6] 2.62 0.483 1.66 3.52 3.53
beta[7] 3.15 0.666 1.89 4.51 3.58
beta[8] 0.131 0.105 -0.0849 0.328 3.57
beta[9] -0.00466 0.00177 -0.00804 -0.00107 3.57

beta[10] -0.0312 0.00209 -0.0353 -0.0271 3.54
beta[11] -0.00635 0.00209 -0.0103 -0.00213 3.75
beta[12] -0.0274 0.00204 -0.0312 -0.0234 3.75
beta[13] -0.00193 0.00196 -0.00577 0.00178 3.75
beta[14] -0.00897 0.00281 -0.0142 -0.00326 3.45

sigma 2.35 0.03 2.29 2.41 3.49
d_fl 0.0345 0.00908 0.0204 0.0519 5.31

d_sire 0.9 0.0767 0.753 1.05 5.26
d_kg 2.17 0.196 1.8 2.54 3.52

Acceptance rate beta = 1.0
Acceptance rate sigma = 1.0
Acceptance rate d_fl = 1.0
Acceptance rate d_sire = 1.0
Acceptance rate d_kg = 1.0

The posterior mean, standard deviation (sd) and 95% credible intervals are
provided for each model parameter. The 95% credible interval is a convenient
measure to determine the significance of a term relative to the base “no effect”
model. The inefficiency factor (IFactor) is also provided. This gives an indication

of the effectiveness of the MCMC sampler. For example, an IFactor of 2 would
indicate that the MCMC would need to be run for double the number of iterations if
we require a sample size of 5000 independent posterior draws. In general, an IFactor
of less then 50 is considered quite adequate.

As can be noted in the output, the coefficients are currently returned as “beta[0]”,
“beta[1]”, etc. These coefficients are returned in the order they are placed in the
model, in this case, beta[0] = constant, beta[1] = AGEATOBS, beta[2] = Male,
beta[3] = PMerino, beta[4] = WSuffolk, beta[5] = Merino, beta[6] = Dorset, beta[7]
= Texel, beta[8] = PFAT,

These generic labels will be replaced with the actual labels in the near future. This
system of reliable ordering will be of assistance to researchers, who will be able to
write script code to complete other tasks whilst using this output. This is currently
an issue in using MCMCglmm() in R.

The magnitude of the random sources can be seen in the comparison of overall
sigma (2.35), flock dfl (0.0345), sire dsire (0.9) and killgroup dkg (2.17). Kill group
was the biggest source of variation, followed by sire and then flock.

If researchers wish to obtain more then the posterior summary above, it is a simple
matter to add an additional line of code to save the MCMC chains to a file, such as
below.

mcmc.CODAoutput(filename = ’betaout’)

This is an important feature as a key advantage of using Bayesian modelling in
mixed effects model is for ease of comparison between effects such as breed in a
post-hoc fashion.

For example, it is relatively easy to test for differences between breeds by
comparing the values at each iteration of the MCMC chain. An example of this is
given in Figure 5 where we test for differences in birth weight (HSCW) and growth
rate (response to age) between the Texel and Dorset breeds. We note from the top
graph that Texel breeds are not significantly heavier than Dorset at birth (intercept),
however, there is evidence of Texel being less responsive to age, with 4% of values
falling below zero.

0.6 Discussion
We have implemented the code employing both functional and unit testing
frameworks. Unit tests are particularly important as they test individual components
of the program using mock data and make it easy to test each component under many
different situations. This provides us a way to test for an extremely wide range of
variations that arise from the different possible ways the users may use the class
LMM to specify the model they are interested in. As a result we can expect far fewer
bugs resulting from the users entering data into the program in unexpected ways, or
setting up model variations that we have not considered.

We are currently completing the code for interaction terms in the random effects.
The code is written, but further testing and debugging is required. The most complex

cmcm

−4 −2 0 2 4

0.
00

0.
10

0.
20

0.
30

Difference in intercept

−0.010 −0.005 0.000 0.005 0.010 0.015 0.020

0
20

60
10

0

Difference in slope

Figure 5 Density of the difference between MCMC draws for the parameters of birth weight
(left) and growth rate (right) for Dorset and Texel breeds. The differences between birth
weight between the the two breeds are non-significant (p=0.32), however, the growth rates
are significantly different (p=0.04), with Dorset breed growing faster than Texel.

part of the code is written in Python, and works correctly, however, the Fortran
implementation (which is required in this part of the procedure for efficiency
reasons) still requires further debugging. This should not take much longer.

We have also decided to provide for the option of Stochastic search variable
selection for the fixed effects. This is essentially a method of automatic variable
selection. We believe this option will be particularly useful as it provides a set of
most probable variables for inclusion in the model and the saves the user from re-
running the analysis and taking variables out base on the output and re-running
the model and so on. It is also statistically more valid. Given in applied work the
researchers are faced with many possible alternative explanatory variables, we think
this inclusion is of substantial practical importance. We already have classes to
implement the stochastic search variable selection, as a part of the PyMCMC library
so we just need to integrate this method carefully to ensure that we retain efficiency
in the current implementation. We do not believe this will cause us too much trouble.

References
Carlin BP and Louis TA 2009 Bayesian methods for data analysis. Chapman & Hall / CRC press, Boca

Raton.
Chib S and Carlin BP 1999 On MCMC sampling in hierarchical longitudinal models. Statistics and

Computing 9, 17–26.
Chib S, Greenberg E and Winkelmann R 1998 Posterior simulation and Bayes factors in panel count data

model. Journal of Econometrics 86, 33–54.
Demidenko E 2004 Mixed models: Theory and applications. Wiley, New Jersey.
Hadfield JD 2010 MCMC methods for Multi-response Generalised Linear Mixed models: The

MCMCglmm R Package. Journal of Statistical Software 33, 1–22.
Hoff P 2009 A first course in Bayesian statistical methods. Springer, Seattle.
J. D, Thomas A, Best N and Spiegelhalter D 2000 WinBUGS – a Bayesian modelling framework:

concepts, structure, and extensibility. Statistics and Computing 10, 325–37.
Sorensen D and Gianola D 2002 Likelihood, Bayesian, and MCMC methods in quantative genetics.

Springer, New York.
Strickland CM, Denham R, Alston CL and Mengersen KL 2012 A python package for Bayesian

estimation using Markov chain Monte Carlo. Under review.
Verbeke G and Molenberghs G 2009 Linear mixed models for longitudinal data. Springer, New York.
Wu L 2010 Mixed effects models for complex data. Chapman & Hall / CRC press, Boca Raton.

	B.LSM.0060 Final Report cover.pdf
	B.LSM.0060 Report1

