

FORUM

For the latest in red meat R&D

Improving within-breed genetic evaluation and developing multi-breed genetic evaluation with the Southern Multi-Breed Project

Brad Walmsley

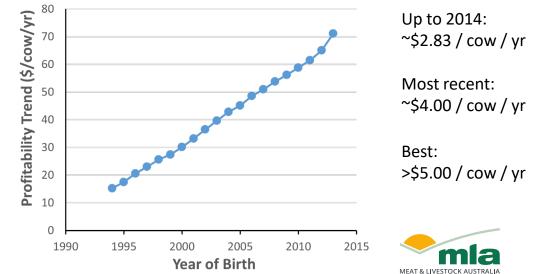
Animal Breeding and Genetics Unit

Brad Walmsley

- B. Rural Science
 - UNE

• Phd

- Responsibilities:
 - BreedObject \$Indexes
 - Southern Multi-breed
 - Other things



Commercial Profit

Profit = Income – Costs

As driven by genetics

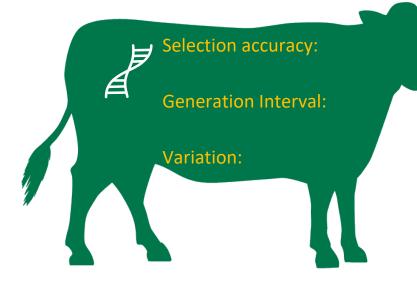
Value of Genetic Improvement - South

Improving within-breed genetic evaluation and developing multi-breed genetic evaluation with the Southern Multi-Breed Project

Improving genetic evaluation

What drives genetic progress?

 $Response = \frac{selection\ intensity \times selection\ accuracy}{generation\ interval}$ Variation

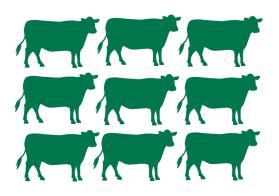

- pick only the best intensity
- make the right choice more often accuracy
- breed from them ASAP generation interval
- identify differences between animals variation

How fast you make genetic progress is dependent on how you balance these factors.

How does genomics help?

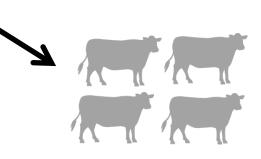
me

More information coming from "relatives"


Identifying earlier who carries good genes

Traits that we can't measure any other way

Genomics can be used to drive faster rates of genetic gain.



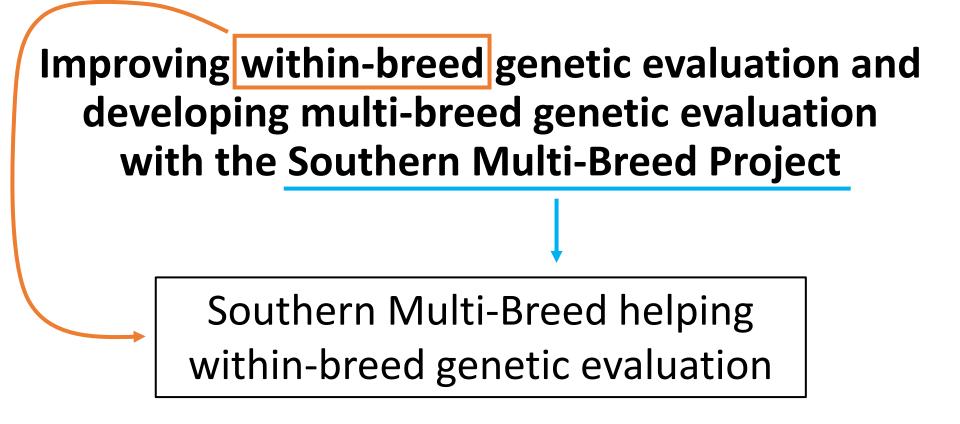
Genomics – basic principle

Reference population:

- measuring phenotypes and genotypes
- hard to measure traits
- late in life traits.

Industry animals:

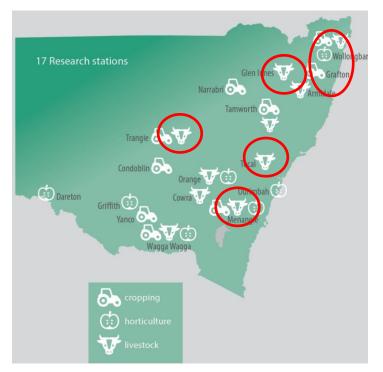
- DNA tests on young animals
- predict breeding values based on genomic
- relationship and traits measured in reference.

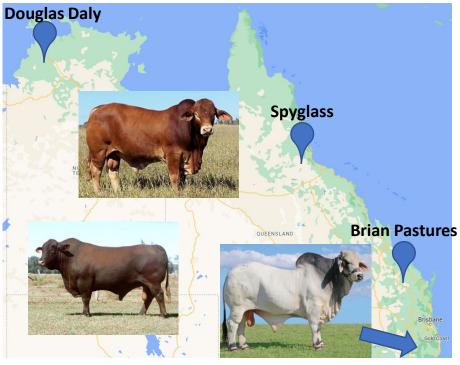

BREEDPLAN Developments

- BREEDPLAN includes genomics (single-step)
 - Brahman (2017)
 - Hereford (2017)
 - Angus (2017)
 - Wagyu (2018)
 - Santa Gertrudis (2021)
 - Droughtmaster (soon)

Research Stations

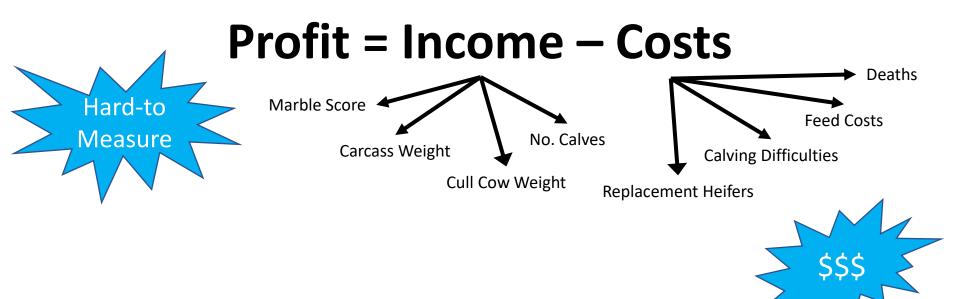
Site Diversity





Southern Multibreed

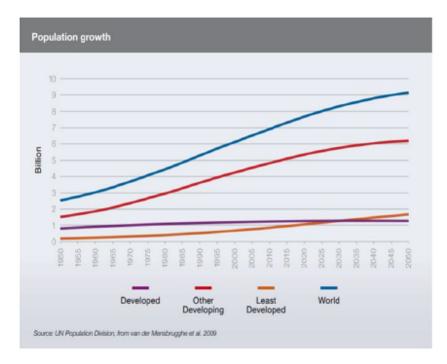
Repronomics



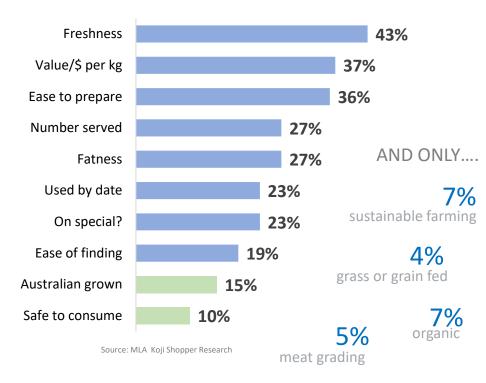
Commercial Profit

Current BREEDPLAN Traits

Growth	Repro	Carcase	Others
Birth Wt	Gestation Length	Scan (live)	Feed Efficiency
Weaning Wt	Calving Ease	Carcase Wt	Temperament
Yearling Wt	Days to Calving	Marbling	Structure
Sale Wt		Rump/Rib Fat	
Mature Wt		Eye Muscle	
		Tenderness (SF)	



University of New England



Growing Population

Purchasing decisions

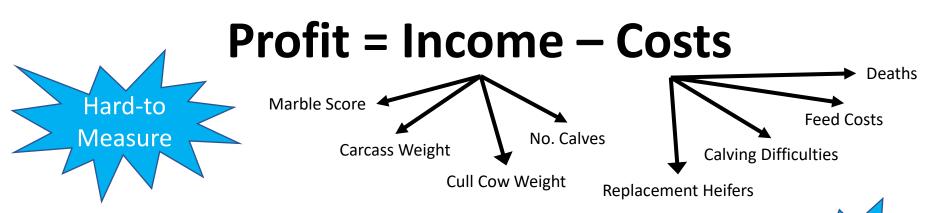
An extra 1 BILLION people to feed every 15 years

MEAT & LIVESTOCK AUSTRALIA

https://news.un.org/en/story/2017/06/560022-world-population-hit-98-billion-2050-despite-nearly-universal-lower-fertility; UN Dept of Economic & Social Affairs, 2017

REDUCERS: Consumers who are reducing RM consumption not as big as 'noise' suggests. Price and health driving reduction.

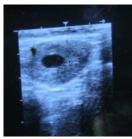
- Less than **1** in **3** consumers are **reducing** their red meat consumption
- Proportion of reducers has **remained stable** for over a decade
- Price, health perceptions, environmental and animal welfare concerns are driving reduction



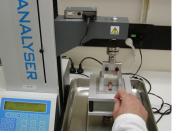
So what? Address concerns of reducers to help them feel good about eating red meat.

Commercial Profit

- What about future Profit?
 - Eating experience Welfare
 - Health benefits Health
- Horns
- Methane



New Traits


Age at Puberty 1st Calf Re-breed

Cow Composition

Meat Quality

Source: E. Toohey

Consumer Testing

Source: P. McGilchrist

Horn/Poll

Immune Competence

Methane

Improving within-breed genetic evaluation and developing multi-breed genetic evaluation with the Southern Multi-Breed Project Southern Multi-Breed helping multi-breed genetic development

Designed Research Program

• Breeds in Southern Australia with highest BREEDPLAN registrations + Brahman

Charolais

Hereford

Brahman

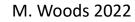
Shorthorn

Wagyu

Managed Head-to-Head

Designed Research Program

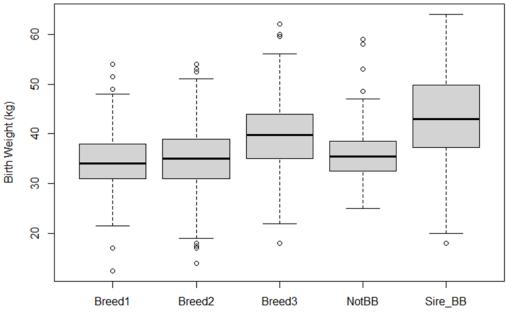
- Purebred matings = Purebred calves[#]
- Designed mating
 - Avoid inbreeding
- Produce comparable progeny
 - All in All out (No cull, no draft)



Grafton Matings[#]

		Cow breed							
		AA	BB	НН					
Bull Breed	AA	\checkmark	\checkmark						
	BB	\checkmark	\checkmark	\checkmark					
	HH		\checkmark	\checkmark					

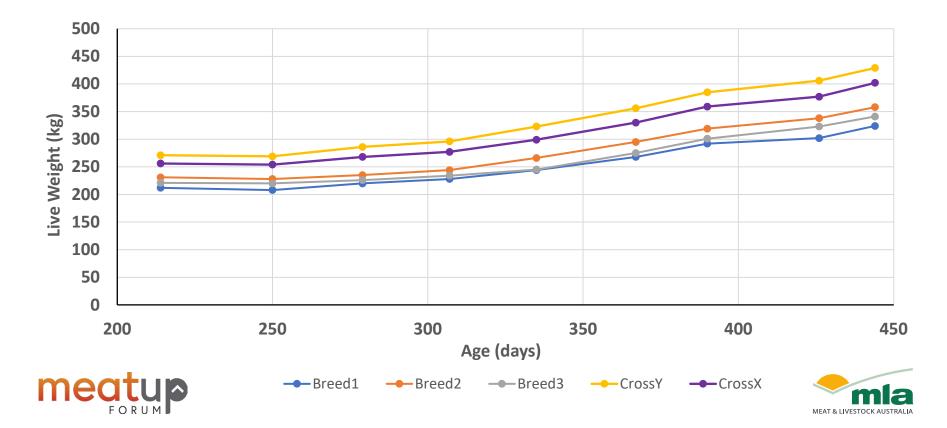
S. Mortimer 2022


Improving within-breed genetic evaluation and developing multi-breed genetic evaluation with the Southern Multi-Breed Project

Key Learnings

Research Learnings - SMB

Breed

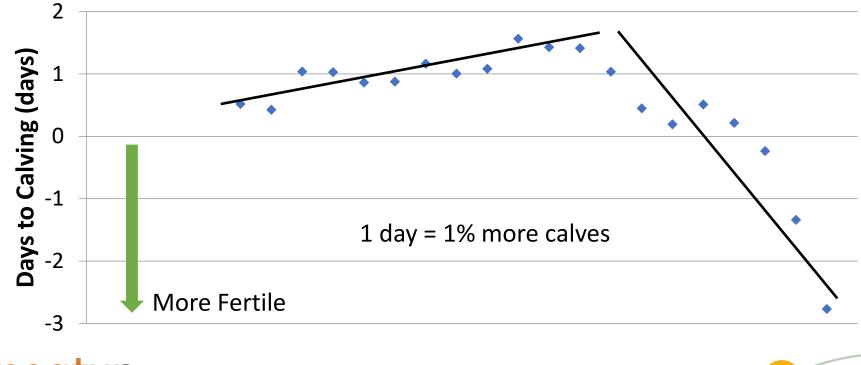

- Crossing breeding
 - Similar to Grafton 70s & 80s

• Important ramifications

Research Learnings - SMB

Research Learnings - Repronomics

Daughter Fertility?


Puberty \rightarrow 8.9 months Recycle \rightarrow 4.4 months

20 day difference

Repronomics^{MT} -Johnston 2021

Research Impact - Brahman

Beef CRC/Repronomics

Research Impact - Brahman

FORUM

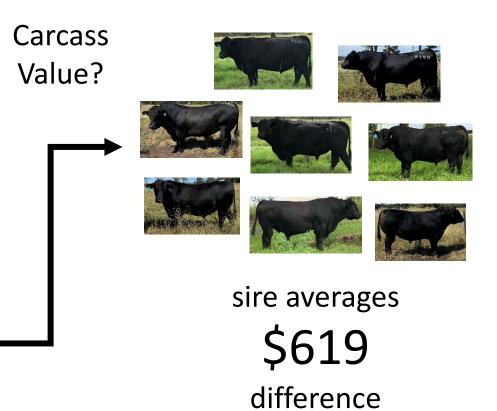
mea

	November 2022 Brahman BREEDPLAN																
		200	400	600	Mat			Days		Eye			Retail		Percent		
Gestation	Birth	Day	Day	Day	Cow		Scrotal	to	Carcase	Muscle	Rib	Rump	Beef		Normal	Flight	Shear
Length	Wt.	Wt	Wt	Wt	Wt	Milk	Size	Calving	Wt	Area	Fat	Fat	Yield	IMF	Sperm	Time	Force
(days)	(kg)	(kg)	(kg)	(kg)	(kg)	(kg)	(cm)	(days)	(kg)	(sq.cm)	(mm)	(mm)	(%)	(%)	(%)	(secs)	(kgs)
+0.1	+3.4	+22	+29	+39	+46	+1	+1.7	-4.9	+22	+2.6	-0.7	-1.4	-	0.0	-	-0.11	+0.11
25%	49%	53%	54%	56%	53%	36%	41%	34%	45%	36%	38%	49%	-	29%	-	42%	38%

Traits Analysed: Genomics

	November 2022 Brahman BREEDPLAN																
		200	400	600	Mat			Days		Eye			Retail		Percent		
Gestation	Birth	Day	Day	Day	Cow		Scrotal	to	Carcase	Muscle	Rib	Rump	Beef		Normal	Flight	Shear
Length	Wt.	Wt	Wt	Wt	Wt	Milk	Size	Calving	Wt	Area	Fat	Fat	Yield	IMF	Sperm	Time	Force
(days)	(kg)	(kg)	(kg)	(kg)	(kg)	(kg)	(cm)	(days)	(kg)	(sq.cm)	(mm)	(mm)	(%)	(%)	(%)	(secs)	(kgs)
0.0	+4.3	+21	+27	+38	+53	0	-0.3	+8.3	+26	+3.1	-1.2	-1.4	+0.9	-0.4	-	+0.03	-0.08
44%	55%	58%	59%	60%	56%	36%	45%	34%	49%	35%	37%	47%	25%	30%	-	43%	38%

Traits Analysed: Genomics


ABBA BREEDPLAN Database – November 2022

Others Findings

worst

\$2076 difference best

MEAT & LIVESTOCK AUSTRALIA

Beef Central & Angus Australia 2018

Acknowledgements

- David Johnston (AGBU Repronomics)
- Leadership Team: Kath Donoghue, Jason Siddell & Sam Clark
- Other Scientists (DPI, UNE, AGBU & CSIRO)
- Management and staff at Trangie, Grafton, Tocal, Glen Innes, EMAI, North Coast and Tullimba
- All technical staff (DPI, UNE & CSIRO)
- Project partners AI, DNA, Merchandise, Breeders, Breed Societies, Producers

Take home messages

- Work needed to capture benefits of genomics
- Investment in Southern Multibreed and Repronomics[™]
- Southern Multibreed benefits to emerge in the future
- Repronomics[™] benefits can be seen in:
 - Brahman
 - Santa
 - Droughtmaster

Tools and resources

• BREEDPLAN

- Tropical breeds already benefiting

BreedObject \$Indexes

<u>https://www.dpi.nsw.gov.au/animals-and-livestock/beef-</u> <u>cattle/breeding/southern-multi-breed-smb-project/project-</u> <u>overview</u>

• Google – Southern Multibreed

