

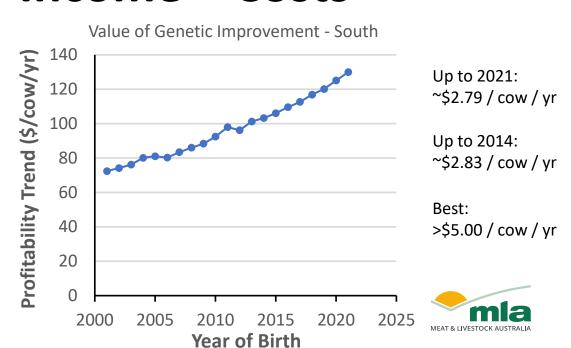


For the latest in red meat R&D

# Improving and developing within-breed and multi-breed genetic evaluation for beef herds across Australia with the Southern Multi-Breed Project

**Brad Walmsley** 

Animal Breeding and Genetics Unit






### **Commercial Profit**

# **Profit = Income - Costs**

As driven by genetics





Improving and developing within-breed and multi-breed genetic evaluation for beef herds across Australia with the Southern Multi-Breed Project

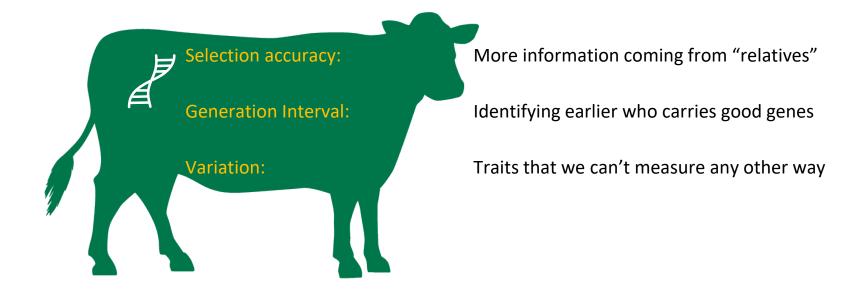
Improving genetic evaluation





### What drives genetic progress?

$$Response = \frac{selection\ intensity \times selection\ accuracy}{generation\ interval}$$
 Variation


- pick only the best intensity
- make the right choice more often accuracy
- breed from them ASAP generation interval
- identify differences between animals variation

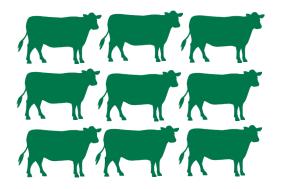


How fast you make genetic progress is dependent on how you balance these factors.



### How does genomics help?

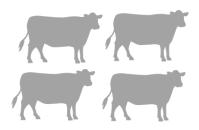





Genomics can be used to drive faster rates of genetic gain.






### **Genomics – basic principle**



### **Reference population:**

- measuring phenotypes and genotypes
- hard to measure traits
- late in life traits.





### **Industry animals:**

- DNA tests on young animals
- predict breeding values based on genomic
- relationship and traits measured in reference.



# **BREEDPLAN** Developments

- BREEDPLAN includes genomics (single-step)
  - Brahman (2017)
  - Hereford (2017)
  - Angus (2017)
  - Wagyu (2018)
  - Santa Gertrudis (2021)
  - Speckle Park (2023)
  - Droughtmaster (soon)
  - Brangus (soon)







Improving and developing within-breed and multi-breed genetic evaluation for beef herds across Australia with the Southern Multi-Breed Project

Southern Multi-Breed helping within-breed genetic evaluation





# **Research Stations**





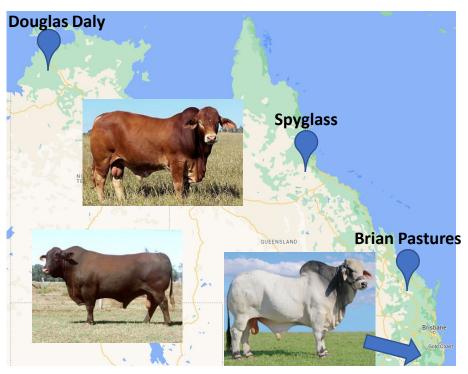


# **Site Diversity**












# **Southern Multibreed**

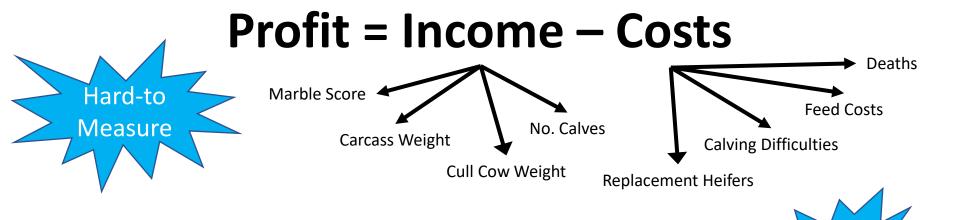
# 17 Research stations Tamworth O\_ Dareton Griffith (3) cropping livestock

## Repronomics
















### **Commercial Profit**







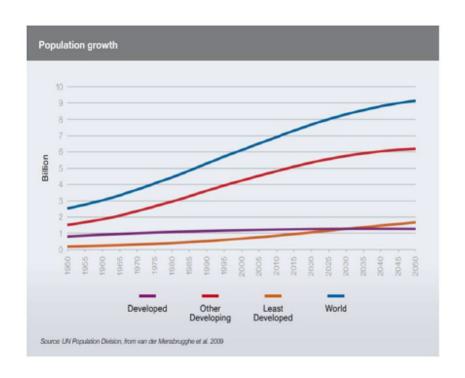
### **Current BREEDPLAN Traits**

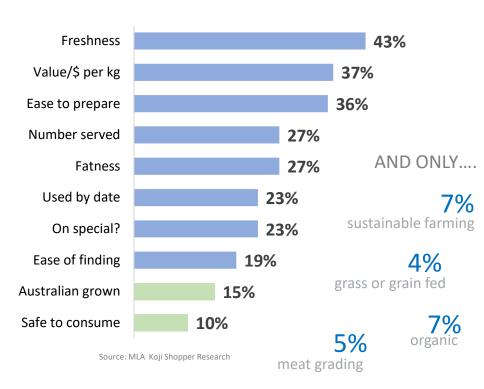
| Growth      | Repro            | Carcase         | Others          |
|-------------|------------------|-----------------|-----------------|
| Birth Wt    | Gestation Length | Scan (live)     | Feed Efficiency |
| Weaning Wt  | Calving Ease     | Carcase Wt      | Temperament     |
| Yearling Wt | Days to Calving  | Marbling        | Structure       |
| Sale Wt     |                  | Rump/Rib Fat    |                 |
| Mature Wt   |                  | Eye Muscle      |                 |
|             |                  | Tenderness (SF) |                 |












# **Growing Population**

# **Purchasing decisions**

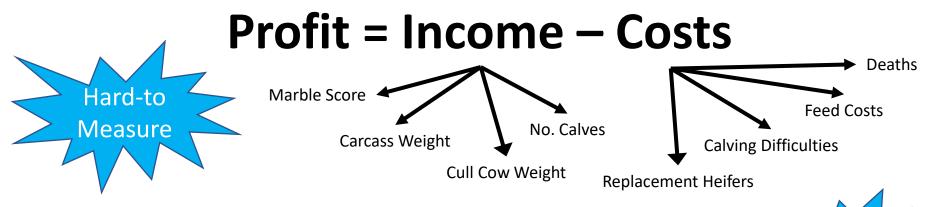








# REDUCERS: Consumers who are reducing RM consumption not as big as 'noise' suggests. Price and health driving reduction.


- Less than 1 in 3 consumers are reducing their red meat consumption
- Proportion of reducers has **remained stable** for over a decade
- Price and health perceptions main drivers
- Environmental and animal welfare concerns also driving reduction



So what? Address concerns of reducers to help them feel good about eating red meat.



### **Commercial Profit**





- Eating experience
- Welfare
- Horns

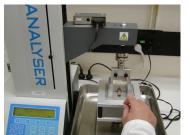
- Health benefits

- Health
- Methane





### **New Traits**




Age at Puberty 1<sup>st</sup> Calf Re-breed





### **Meat Quality**



Source: E. Toohey

### **Consumer Testing**



Source: P. McGilchrist



Horn/Poll



**Cow Composition** 

### Immune Competence







Methane











Improving and developing within-breed and multi-breed genetic evaluation for beef herds across Australia with the Southern Multi-Breed Project

Southern Multi-Breed helping multi-breed genetic development





# **Designed Research Program**

• Breeds in Southern Australia with highest BREEDPLAN registrations + Brahman

Charolais



W EE

Angus

Hereford





**Brahman** 

Shorthorn





Wagyu













# **Managed Head-to-Head**















# **Designed Research Program**

- Purebred matings = Purebred calves\*
- Designed mating
  - Avoid inbreeding
- Produce comparable progeny
  - All in All out (No cull, no draft)

















# **Grafton Matings**#

|               |    | Cow breed |          |          |  |  |  |  |
|---------------|----|-----------|----------|----------|--|--|--|--|
|               |    | AA        | BB       | НН       |  |  |  |  |
| D. II         | AA | <b>√</b>  | <b>√</b> |          |  |  |  |  |
| Bull<br>Breed | BB | <b>√</b>  | <b>√</b> | <b>√</b> |  |  |  |  |
| breed         | НН |           | <b>√</b> | <b>✓</b> |  |  |  |  |





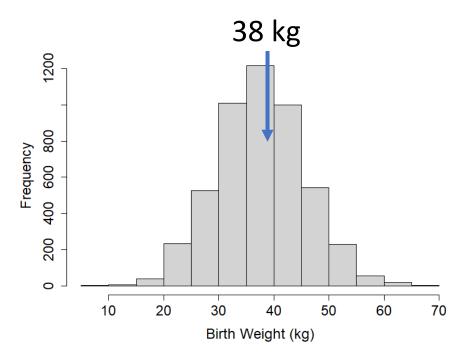
M. Woods 2022







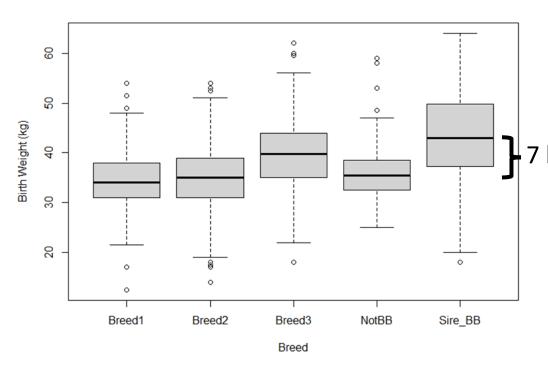





# Improving within-breed genetic evaluation and developing multi-breed genetic evaluation with the Southern Multi-Breed Project

# **Key Learnings**





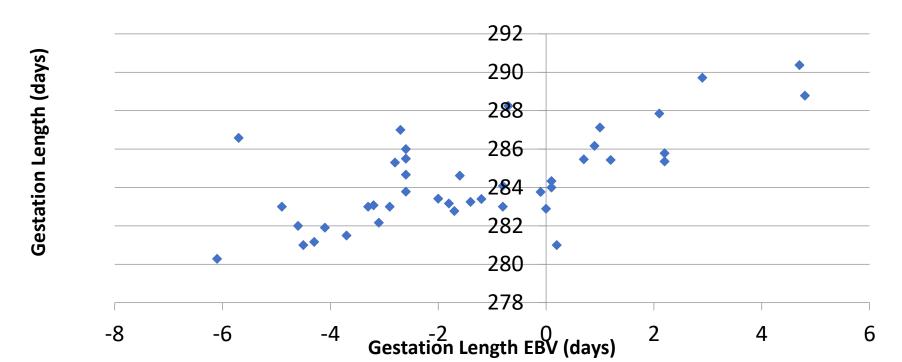



Variation within breeds



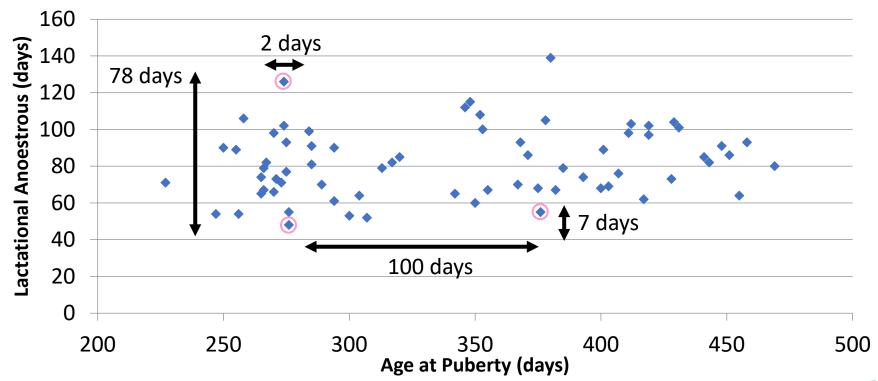





Variation within breeds

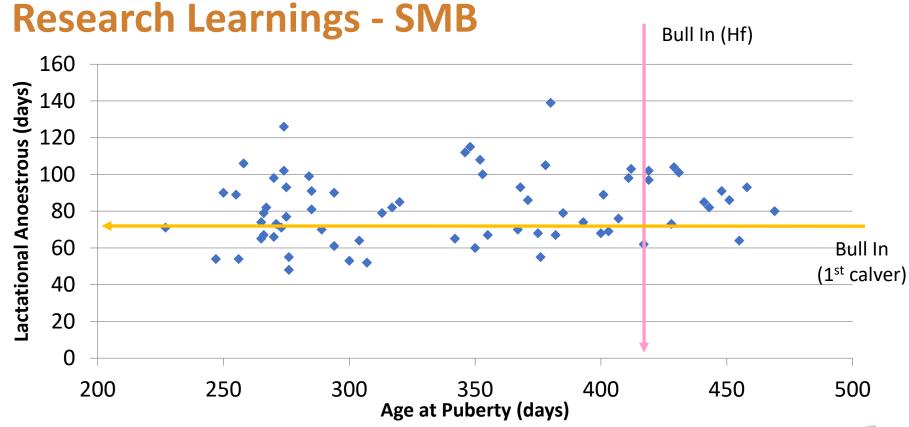
- Crossing breeding
  - Similar to Grafton 70s & 80s

Important ramifications






















# **Research Learnings - Repronomics**



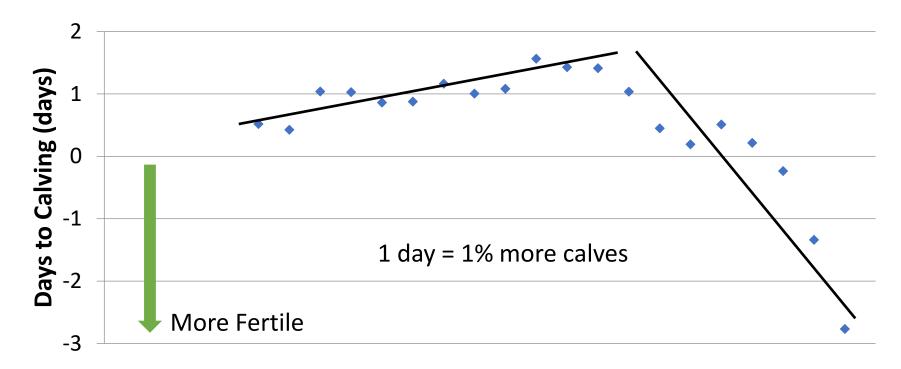
Daughter Fertility?





Puberty  $\rightarrow$  8.9 months Recycle  $\rightarrow$  4.4 months




Repronomics<sup>MT</sup> - Johnston 2021



20 day difference



# **Research Impact - Brahman**







# **Research Impact - Brahman**



| November 202 <mark>2 Brahman BREEDPLAN</mark> |       |      |      |      |      |      |         |              |         |         |      |      |        |     |         |        |       |
|-----------------------------------------------|-------|------|------|------|------|------|---------|--------------|---------|---------|------|------|--------|-----|---------|--------|-------|
|                                               |       | 200  | 400  | 600  | Mat  |      |         | Days         |         | Eye     |      |      | Retail |     | Percent |        |       |
| Gestation                                     | Birth | Day  | Day  | Day  | Cow  |      | Scrotal | to           | Carcase | Muscle  | Rib  | Rump | Beef   |     | Normal  | Flight | Shear |
| Length                                        | Wt.   | Wt   | Wt   | Wt   | Wt   | Milk | Size    | Calving      | Wt      | Area    | Fat  | Fat  | Yield  | IMF | Sperm   | Time   | Force |
| (days)                                        | (kg)  | (kg) | (kg) | (kg) | (kg) | (kg) | (cm)    | (days)       | (kg)    | (sq.cm) | (mm) | (mm) | (%)    | (%) | (%)     | (secs) | (kgs) |
| +0.1                                          | +3.4  | +22  | +29  | +39  | +46  | +1   | +1.7    | <b>-</b> 4.9 | +22     | +2.6    | -0.7 | -1.4 | -      | 0.0 | -       | -0.11  | +0.11 |
| 25%                                           | 49%   | 53%  | 54%  | 56%  | 53%  | 36%  | 41%     | 34%          | 45%     | 36%     | 38%  | 49%  | -      | 29% | -       | 42%    | 38%   |

Traits Analysed: Genomics

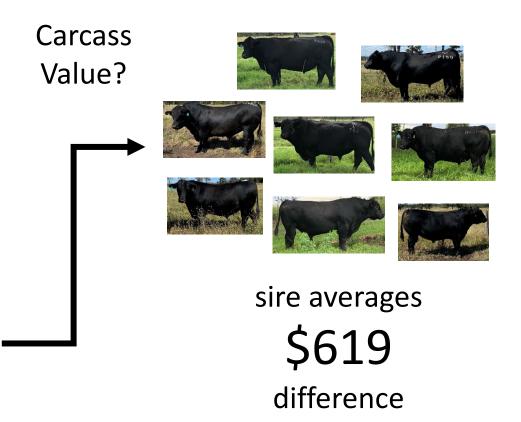




| ı |               | November 2022 Brahman BREEDPLAN |      |      |      |      |      |         |         |         |         |      |      |        |      |         |        |       |
|---|---------------|---------------------------------|------|------|------|------|------|---------|---------|---------|---------|------|------|--------|------|---------|--------|-------|
|   | November 2022 |                                 |      |      |      |      |      |         | Draiiii | an DKE  | EDI LA  | 14   |      |        |      |         |        |       |
|   |               |                                 | 200  | 400  | 600  | Mat  |      |         | Days    |         | Eye     |      |      | Retail |      | Percent |        |       |
|   | Gestation     | Birth                           | Day  | Day  | Day  | Cow  |      | Scrotal | to      | Carcase | Muscle  | Rib  | Rump | Beef   |      | Normal  | Flight | Shear |
|   | Length        | Wt.                             | Wt   | Wt   | Wt   | Wt   | Milk | Size    | Calving | Wt      | Area    | Fat  | Fat  | Yield  | IMF  | Sperm   | Time   | Force |
|   | (days)        | (kg)                            | (kg) | (kg) | (kg) | (kg) | (kg) | (cm)    | (days)  | (kg)    | (sq.cm) | (mm) | (mm) | (%)    | (%)  | (%)     | (secs) | (kgs) |
|   | 0.0           | +4.3                            | +21  | +27  | +38  | +53  | 0    | -0.3    | +8.3    | +26     | +3.1    | -1.2 | -1.4 | +0.9   | -0.4 | -       | +0.03  | -0.08 |
|   | 44%           | 55%                             | 58%  | 59%  | 60%  | 56%  | 36%  | 45%     | 34%     | 49%     | 35%     | 37%  | 47%  | 25%    | 30%  | -       | 43%    | 38%   |

Traits Analysed: Genomics



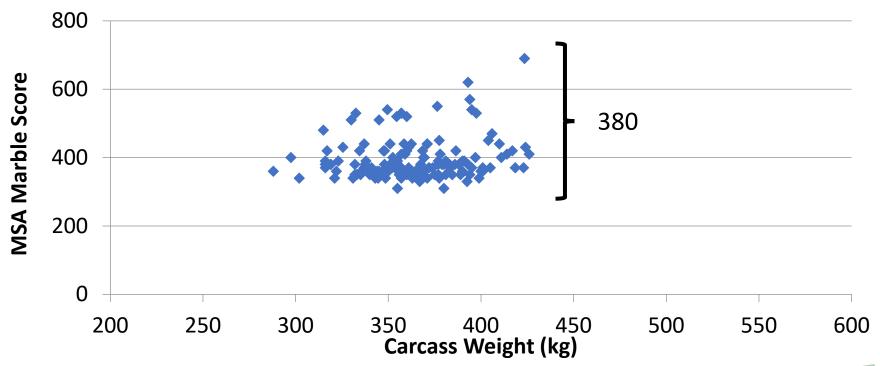





# **Others Findings**

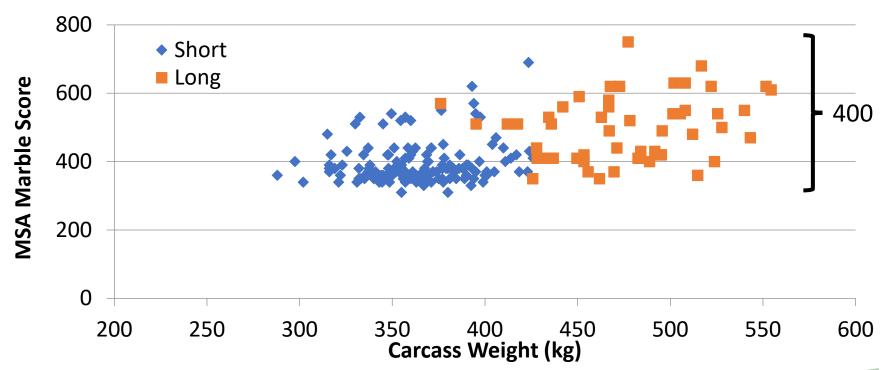


difference






worst




best













# Acknowledgements

- David Johnston (AGBU Repronomics)
- Leadership Team: Kath Donoghue, Jason Siddell & Sam Clark
- Other Scientists (DPI, UNE, AGBU & CSIRO)
- Management and staff at Trangie, Grafton, Tocal, Glen Innes, EMAI,
  North Coast and Tullimba
- All technical staff (DPI, UNE & CSIRO)
- Project partners Al, DNA, Merchandise, Breeders, Breed Societies, Producers











# Take home messages

- Work needed to capture benefits of genomics
- Investment in Southern Multibreed and Repronomics<sup>TM</sup>



- Southern Multibreed benefits to emerge in the future
- Repronomics<sup>TM</sup> benefits can be seen in:
  - Brahman
  - Santa
  - Droughtmaster







### **Tools and resources**

- BREEDPLAN
- BreedObject \$Indexes

- Tropical breeds already benefiting
  - Temperate breeds soon from SMB

https://www.dpi.nsw.gov.au/animals-and-livestock/beefcattle/breeding/southern-multi-breed-smb-project/projectoverview

Google – Southern Multibreed



